Volgushev M, Chistiakova M, Singer W
Max Planck Institute for Brain Research, Frankfurt/Main, Germany.
Neuroscience. 1998 Mar;83(1):15-25. doi: 10.1016/s0306-4522(97)00380-1.
We investigated, with whole-cell recordings from rat visual cortex slices, how sinusoidal modulation of the membrane potential affects signal transmission. Subthreshold oscillations activate tetrodotoxin sensitive, transient inward currents whose threshold, phase lag and duration change with modulation frequency. These periodically recurring phases of enhanced excitability affect synaptic transmission in two ways. Weak and short lasting excitatory postsynaptic potentials evoke discharges only if they are coincident within a few milliseconds with these active membrane responses. Long-lasting, N-methyl-D-aspartate-mediated or polysynaptic excitatory postsynaptic potentials, by contrast, evoke trains of spikes, that are precisely time-locked to the oscillations and may last for more than 100 ms. Thus, oscillations impose a precise temporal window for the integration of synaptic inputs, favouring coincidence detection and they generate temporally-structured responses whose timing and amplitude are largely independent of the input. These properties are ideally suited for the synchronization of neuronal activity and the encoding of information in the precise timing of discharges. A preliminary account of these data has appeared in an abstract form [Volgushev M. et al. (1995) Eur. J Neurosci. 8, 77].
我们采用大鼠视觉皮层脑片的全细胞记录方法,研究了膜电位的正弦调制如何影响信号传递。阈下振荡激活了对河豚毒素敏感的瞬时内向电流,其阈值、相位滞后和持续时间随调制频率而变化。这些周期性出现的兴奋性增强阶段以两种方式影响突触传递。微弱且持续时间短的兴奋性突触后电位只有在与这些活跃的膜反应在几毫秒内同时发生时才会引发放电。相比之下,持久的、由N-甲基-D-天冬氨酸介导的或多突触的兴奋性突触后电位会引发一连串的尖峰,这些尖峰与振荡精确地锁时,并且可能持续超过100毫秒。因此,振荡为突触输入的整合强加了一个精确的时间窗口,有利于同时检测,并且它们产生时间结构的反应,其时间和幅度在很大程度上独立于输入。这些特性非常适合神经元活动的同步以及在放电的精确时间对信息进行编码。这些数据的初步描述已以摘要形式发表[Volgushev M.等人(1995年),《欧洲神经科学杂志》8, 77]。