Bolker B, Pacala SW
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, 08544-1003
Theor Popul Biol. 1997 Dec;52(3):179-97. doi: 10.1006/tpbi.1997.1331.
Spatial patterns in biological populations and the effect of spatial patterns on ecological interactions are central topics in mathematical ecology. Various approaches to modeling have been developed to enable us to understand spatial patterns ranging from plant distributions to plankton aggregation. We present a new approach to modeling spatial interactions by deriving approximations for the time evolution of the moments (mean and spatial covariance) of ensembles of distributions of organisms; the analysis is made possible by "moment closure," neglecting higher-order spatial structure in the population. We use the growth and competition of plants in an explicitly spatial environment as a starting point for exploring the properties of second-order moment equations and comparing them to realizations of spatial stochastic models. We find that for a wide range of effective neighborhood sizes (each plant interacting with several to dozens of neighbors), the mean-covariance model provides a useful and analytically tractable approximation to the stochastic spatial model, and combines useful features of stochastic models and traditional reaction-diffusion-like models. Copyright 1997 Academic Press. Copyright 1997 Academic Press
生物种群中的空间格局以及空间格局对生态相互作用的影响是数学生态学的核心主题。已开发出各种建模方法,使我们能够理解从植物分布到浮游生物聚集等各种空间格局。我们提出了一种新的建模空间相互作用的方法,通过推导生物分布集合矩(均值和空间协方差)随时间演化的近似值来实现;这种分析通过“矩闭合”得以实现,即忽略种群中的高阶空间结构。我们以明确空间环境中植物的生长和竞争为出发点,探索二阶矩方程的性质,并将其与空间随机模型的实现进行比较。我们发现,对于广泛的有效邻域大小(每株植物与几株到几十株邻居相互作用),均值 - 协方差模型为随机空间模型提供了一种有用且易于分析处理的近似,并且结合了随机模型和传统反应 - 扩散类模型的有用特征。版权所有1997年学术出版社。版权所有1997年学术出版社