Suppr超能文献

基于神经网络的食管动力非参数分类

Non-parametric classification of esophagus motility by means of neural networks.

作者信息

Thøgersen C, Rasmussen C, Rutz K, Jakobsen E, Kruse-Andersen S

机构信息

Department of Thoracic and Cardiovascular Surgery, Odense University Hospital, Denmark.

出版信息

Methods Inf Med. 1997 Dec;36(4-5):352-5.

PMID:9470397
Abstract

Automatic long-term recording of esophageal pressures by means of intraluminal transducers is used increasingly for evaluation of esophageal function. Most automatic analysis techniques are based on detection of derived parameters from the time series by means of arbitrary rule-based criterions. The aim of the present work has been to test the ability of neural networks to identify abnormal contraction patterns in patients with non-obstructive dysphagia (NOBD). Nineteen volunteers and 22 patients with NOBD underwent simultaneous recordings of four pressures in the esophagus for at least 23 hours. Data from 21 subjects were selected for training. The performances of two trained networks were subsequently verified on reference data from 20 subjects. The results show that non-parametric classification by means of neural networks has good potentials. Back propagation shows good performance with a sensitivity of 1.0 and a specificity of 0.8.

摘要

通过腔内换能器自动长期记录食管压力越来越多地用于评估食管功能。大多数自动分析技术基于通过任意基于规则的标准从时间序列中检测派生参数。本研究的目的是测试神经网络识别非梗阻性吞咽困难(NOBD)患者异常收缩模式的能力。19名志愿者和22名NOBD患者同时记录食管中的四个压力至少23小时。选择21名受试者的数据进行训练。随后在20名受试者的参考数据上验证了两个训练网络的性能。结果表明,通过神经网络进行的非参数分类具有良好的潜力。反向传播表现良好,灵敏度为1.0,特异性为0.8。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验