Suppr超能文献

Beta-N-acetylhexosaminidase: a target for the design of antifungal agents.

作者信息

Horsch M, Mayer C, Sennhauser U, Rast D M

机构信息

Plant Biology Department, University of Zürich, Switzerland.

出版信息

Pharmacol Ther. 1997 Oct-Dec;76(1-3):187-218. doi: 10.1016/s0163-7258(97)00110-1.

Abstract

This review provides biochemical, analytical, and biological background information relating to beta-N-acetylhexosaminidase (HexNAc'ase; EC 3.2.1.52) as an emerging target for the design of low-molecular-weight antifungals. The article includes the following: (1) a biochemical description of HexNAc'ase (reaction catalyzed, nomenclature, and mechanism of action) that sets it apart from other, similar enzymes; (2) an overview and a critical evaluation of methods to assay the enzyme, including in crude extracts (photo- and fluorometric procedures with model substrates; HPLC/pulsed amperometric detection of N-acetylglucosamine and chito-oligomers; end-point vs. rate measurements); (3) a summary of some general characteristics of HexNAc'ases from fungi and organisms of other types (Km values, substrate preference, and glycoconjugation); (4) an hypothesis of a specific target function of wall-associated HexNAc'ase (a component of the assembly of surface-located enzymes effecting a continuous turnover and remodelling of the wall fabric through its combined hydrolytic and transglycosylating activities, and a mediator enzyme acting in concert with chitinase and chitin synthase to provide for the controlled lysis and synthesis of chitin during growth); (5) a tabulation of the structural formulae of reaction-based HexNAc'ase inhibitors with Ki values < or = 100 microM (some of them representing transition state mimics that could serve as leads for the development of new antifungals); and (6) an outline of approaches towards the establishment of a three-dimensional model of HexNAc'ase suitable for a truly rational design of antimycotics as well as agricultural fungicides.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验