Slinker B K
Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, USA.
J Mol Cell Cardiol. 1998 Apr;30(4):723-31. doi: 10.1006/jmcc.1998.0655.
Biological scientists often want to determine whether two agents or events, for example, extracellular stimuli and/or intracellular signaling pathways, act synergistically when eliciting a biological response. When setting out to study whether two experimental treatments act synergistically, most biologists design the correct experiment--they administer four treatment combinations consisting of (1) the first treatment alone, (2) the second treatment alone, (3) both treatments together, and (4) neither treatment (i.e. the control). Many biologists are less clear about the correct statistical approach to determining whether the data collected in such an experimental design support a conclusion regarding synergism, or lack thereof. The non-additivity of two experimental treatments that is central to the definition of synergism leads to an algebraic formulation corresponding to the statistical null hypothesis appropriate for testing whether or not there is synergism. The resulting complex contrast among the four treatment group means is identical to the interaction effect tested in a two-way analysis of variance (ANOVA). This should not be surprising, because synergism, by definition, occurs when two treatments interact, rather than act independently, to influence a biological response. Hence, in the most readily implemented approach, the correct statistical analysis of a question of synergism is based on testing the interaction effect in a two-way ANOVA. This review presents the rationale for this correct approach to analysing data when the question is of synergism, and applies this approach to a recent published example. In addition, a common incorrect approach to analysing data with regards to synergism is presented. Finally, several associated statistical issues with regard to correctly implementing a two-way ANOVA are discussed.
生物科学家常常想要确定两种因素或事件,例如细胞外刺激和/或细胞内信号通路,在引发生物反应时是否具有协同作用。在着手研究两种实验处理是否具有协同作用时,大多数生物学家设计了正确的实验——他们采用四种处理组合,分别是:(1) 单独使用第一种处理;(2) 单独使用第二种处理;(3) 两种处理一起使用;(4) 两种处理都不使用(即对照)。然而,许多生物学家对于采用何种正确的统计方法来确定在这样的实验设计中收集到的数据是否支持关于协同作用(或缺乏协同作用)的结论并不清楚。协同作用定义的核心在于两种实验处理的非加和性,这导致了一种代数表达式,它对应于适合检验是否存在协同作用的统计零假设。由此产生的四个处理组均值之间的复杂对比与在双向方差分析(ANOVA)中检验的交互效应相同。这并不奇怪,因为根据定义,当两种处理相互作用而非独立作用来影响生物反应时,就会出现协同作用。因此,在最容易实施的方法中,对协同作用问题进行正确的统计分析是基于在双向ANOVA中检验交互效应。本综述阐述了在问题涉及协同作用时对数据进行这种正确分析方法的基本原理,并将此方法应用于最近发表的一个例子。此外,还介绍了一种关于协同作用数据分析的常见错误方法。最后,讨论了正确实施双向ANOVA的几个相关统计问题。