Jones E M, Laus C, Fettiplace R
Department of Physiology, University of Wisconsin Medical School, Madison 53706, USA.
Proc Biol Sci. 1998 Apr 22;265(1397):685-92. doi: 10.1098/rspb.1998.0348.
Turtle auditory-hair cells are frequency-tuned by the activity of calcium-activated potassium (KCa) channels, a cell's characteristic frequency being determined by the KCa channel density and kinetics which both vary systematically along the cochlea. As a first step towards identifying the source of KCa channel variation, we have isolated, by reverse-transcription polymerase chain reaction on dissociated hair cells, the main cDNAs homologous to the slo gene which encodes the channel's alpha-subunit. A total of six alternatively spliced variants were identified, the smallest of which is 94% identical to a mouse Slo sequence. Variation occurs by insertion of exons at only two splice sites, two of these exons encoding novel 31- and 61-amino acid sequences. As we were unable to detect splicing at other potential sites, we infer that the six variants correspond to naturally occurring combinations. The spatial distribution of the variants, defined by isolating hair cells from different regions of the cochlea, indicated that some isoforms were non-uniformly distributed. Those containing large inserts in the first splice site were notably absent from the highest-frequency region. We suggest that alternative splicing of the slo gene may contribute to variation in KCa channel properties.
龟的听觉毛细胞通过钙激活钾(KCa)通道的活性进行频率调谐,细胞的特征频率由KCa通道密度和动力学决定,而这两者沿耳蜗呈系统性变化。作为确定KCa通道变异来源的第一步,我们通过对解离的毛细胞进行逆转录聚合酶链反应,分离出了与编码该通道α亚基的slo基因同源的主要cDNA。总共鉴定出六个可变剪接变体,其中最小的与小鼠Slo序列有94%的同一性。变异仅通过在两个剪接位点插入外显子发生,其中两个外显子编码新的31和61个氨基酸序列。由于我们无法在其他潜在位点检测到剪接,我们推断这六个变体对应于自然发生的组合。通过从耳蜗不同区域分离毛细胞来定义变体的空间分布,结果表明一些异构体分布不均匀。在最高频率区域明显没有那些在第一个剪接位点含有大插入片段的变体。我们认为slo基因的可变剪接可能导致KCa通道特性的变异。