Suppr超能文献

龟耳蜗中钙激活钾通道剪接变体的鉴定及其分布

Identification of Ca(2+)-activated K+ channel splice variants and their distribution in the turtle cochlea.

作者信息

Jones E M, Laus C, Fettiplace R

机构信息

Department of Physiology, University of Wisconsin Medical School, Madison 53706, USA.

出版信息

Proc Biol Sci. 1998 Apr 22;265(1397):685-92. doi: 10.1098/rspb.1998.0348.

Abstract

Turtle auditory-hair cells are frequency-tuned by the activity of calcium-activated potassium (KCa) channels, a cell's characteristic frequency being determined by the KCa channel density and kinetics which both vary systematically along the cochlea. As a first step towards identifying the source of KCa channel variation, we have isolated, by reverse-transcription polymerase chain reaction on dissociated hair cells, the main cDNAs homologous to the slo gene which encodes the channel's alpha-subunit. A total of six alternatively spliced variants were identified, the smallest of which is 94% identical to a mouse Slo sequence. Variation occurs by insertion of exons at only two splice sites, two of these exons encoding novel 31- and 61-amino acid sequences. As we were unable to detect splicing at other potential sites, we infer that the six variants correspond to naturally occurring combinations. The spatial distribution of the variants, defined by isolating hair cells from different regions of the cochlea, indicated that some isoforms were non-uniformly distributed. Those containing large inserts in the first splice site were notably absent from the highest-frequency region. We suggest that alternative splicing of the slo gene may contribute to variation in KCa channel properties.

摘要

龟的听觉毛细胞通过钙激活钾(KCa)通道的活性进行频率调谐,细胞的特征频率由KCa通道密度和动力学决定,而这两者沿耳蜗呈系统性变化。作为确定KCa通道变异来源的第一步,我们通过对解离的毛细胞进行逆转录聚合酶链反应,分离出了与编码该通道α亚基的slo基因同源的主要cDNA。总共鉴定出六个可变剪接变体,其中最小的与小鼠Slo序列有94%的同一性。变异仅通过在两个剪接位点插入外显子发生,其中两个外显子编码新的31和61个氨基酸序列。由于我们无法在其他潜在位点检测到剪接,我们推断这六个变体对应于自然发生的组合。通过从耳蜗不同区域分离毛细胞来定义变体的空间分布,结果表明一些异构体分布不均匀。在最高频率区域明显没有那些在第一个剪接位点含有大插入片段的变体。我们认为slo基因的可变剪接可能导致KCa通道特性的变异。

相似文献

1
Identification of Ca(2+)-activated K+ channel splice variants and their distribution in the turtle cochlea.
Proc Biol Sci. 1998 Apr 22;265(1397):685-92. doi: 10.1098/rspb.1998.0348.
2
The functional role of alternative splicing of Ca(2+)-activated K+ channels in auditory hair cells.
Ann N Y Acad Sci. 1999 Apr 30;868:379-85. doi: 10.1111/j.1749-6632.1999.tb11299.x.
3
The role of Ca2+-activated K+ channel spliced variants in the tonotopic organization of the turtle cochlea.
J Physiol. 1999 Aug 1;518 ( Pt 3)(Pt 3):653-65. doi: 10.1111/j.1469-7793.1999.0653p.x.
6
A developmental model for generating frequency maps in the reptilian and avian cochleas.
Biophys J. 1996 Jun;70(6):2557-70. doi: 10.1016/S0006-3495(96)79827-2.
7
Expression of Ca2+-activated BK channel mRNA and its splice variants in the rat cochlea.
J Comp Neurol. 2003 Jan 6;455(2):198-209. doi: 10.1002/cne.10471.
8
CSlo encodes calcium-activated potassium channels in the chick's cochlea.
Proc Biol Sci. 1997 May 22;264(1382):731-7. doi: 10.1098/rspb.1997.0104.
10
Expression of Ca(2+)-activated K(+) channel subunits and splice variants in the rat cochlea.
Hear Res. 2001 Nov;161(1-2):23-8. doi: 10.1016/s0378-5955(01)00323-9.

引用本文的文献

2
Alternative splicing in shaping the molecular landscape of the cochlea.
Front Cell Dev Biol. 2023 Mar 2;11:1143428. doi: 10.3389/fcell.2023.1143428. eCollection 2023.
3
Of mice and chickens: Revisiting the RC time constant problem.
Hear Res. 2022 Sep 15;423:108422. doi: 10.1016/j.heares.2021.108422. Epub 2021 Dec 17.
5
CDK5 interacts with Slo and affects its surface expression and kinetics through direct phosphorylation.
Am J Physiol Cell Physiol. 2012 Mar 1;302(5):C766-80. doi: 10.1152/ajpcell.00339.2011. Epub 2011 Nov 16.
6
β4-subunit increases Slo responsiveness to physiological Ca2+ concentrations and together with β1 reduces surface expression of Slo in hair cells.
Am J Physiol Cell Physiol. 2011 Mar;300(3):C435-46. doi: 10.1152/ajpcell.00449.2010. Epub 2010 Dec 22.
9
Control of alternative pre-mRNA splicing by Ca(++) signals.
Biochim Biophys Acta. 2008 Aug;1779(8):438-52. doi: 10.1016/j.bbagrm.2008.01.003. Epub 2008 Jan 17.
10
Ion channel gene expression in the inner ear.
J Assoc Res Otolaryngol. 2007 Sep;8(3):305-28. doi: 10.1007/s10162-007-0082-y. Epub 2007 Jun 1.

本文引用的文献

3
CSlo encodes calcium-activated potassium channels in the chick's cochlea.
Proc Biol Sci. 1997 May 22;264(1382):731-7. doi: 10.1098/rspb.1997.0104.
6
A developmental model for generating frequency maps in the reptilian and avian cochleas.
Biophys J. 1996 Jun;70(6):2557-70. doi: 10.1016/S0006-3495(96)79827-2.
9
The calcium-activated potassium channels of turtle hair cells.
J Gen Physiol. 1995 Jan;105(1):49-72. doi: 10.1085/jgp.105.1.49.
10
mSlo, a complex mouse gene encoding "maxi" calcium-activated potassium channels.
Science. 1993 Jul 9;261(5118):221-4. doi: 10.1126/science.7687074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验