Suppr超能文献

结肠巨噬细胞的分离与表型特征分析

Isolation and phenotypic characterization of colonic macrophages.

作者信息

Rogler G, Hausmann M, Vogl D, Aschenbrenner E, Andus T, Falk W, Andreesen R, Schölmerich J, Gross V

机构信息

Department of Internal Medicine I, University of Regensburg, Germany.

出版信息

Clin Exp Immunol. 1998 May;112(2):205-15. doi: 10.1046/j.1365-2249.1998.00557.x.

Abstract

Macrophages play an important role in the intestinal mucosal immune system. However, they are a poorly defined cell population. We therefore determined their phenotype in normal colonic mucosa. Macrophages were isolated from colonic biopsies and surgical specimens by collagenase digestion. Colonic macrophages were positively sorted by anti-CD33 magnetic beads. Flow cytometric triple fluorescence analysis was applied to study CD14, CD16, CD33, CD44, CD11b, CD11c, CD64, HLA-DR, CD80, CD86 and CD3/CD19 expression. CD33 was evaluated as a positive marker for intestinal macrophages. CD33+ cells isolated from normal colonic mucosa showed co-expression of the established intracellular macrophage marker CD68 in FACS analysis. CD33+ cells were capable of phagocytosis. Isolation of this cell population by magnetic anti-CD33 beads and culture resulted in a 4.2-40-fold increase in IL-1beta and 4.5-44-fold increase in tumour necrosis factor-alpha (TNF-alpha) secretion compared with unsorted lamina propria mononuclear cells (LPMC). Of the CD33+ cells, 90.9 +/- 6.9% (mean +/- s.d.) were CD44+. However, macrophages from colonic mucosa showed only a low expression of CD14 (10.5 +/- 3.8%), CD16 (10.1 +/- 3.9%), HLA-DR (27.3 +/- 9.2%), CD11b (17.4 +/- 6.8%), CD11c (17.8 +/- 10.4%). Furthermore, expression of CD80 (9.2 +/- 4.2%) and CD86 (15.1 +/- 7.3%) was low, suggesting a low ability of normal intestinal macrophages to activate T cells and T cell-mediated immune responses. We conclude that CD33 is useful for the isolation and flow cytometric characterization of colonic macrophages. These cells exhibit a single phenotype in normal mucosa (CD33++, CD44++, CD14-, CD16-, CD11b-, CD11c-, HLA-DRlow, CD80-, CD86-) lacking lipopolysaccharide (LPS) receptor and costimulatory molecules.

摘要

巨噬细胞在肠道黏膜免疫系统中发挥着重要作用。然而,它们是一类定义尚不明确的细胞群体。因此,我们确定了它们在正常结肠黏膜中的表型。通过胶原酶消化从结肠活检组织和手术标本中分离出巨噬细胞。用抗CD33磁珠对结肠巨噬细胞进行阳性分选。应用流式细胞术三重荧光分析来研究CD14、CD16、CD33、CD44、CD11b、CD11c、CD64、HLA-DR、CD80、CD86和CD3/CD19的表达。CD33被评估为肠道巨噬细胞的阳性标志物。在流式细胞术分析中,从正常结肠黏膜分离出的CD33+细胞显示出已确定的细胞内巨噬细胞标志物CD68的共表达。CD33+细胞具有吞噬能力。与未分选的固有层单核细胞(LPMC)相比,通过抗CD33磁珠分离并培养该细胞群体导致白细胞介素-1β分泌增加4.2至40倍,肿瘤坏死因子-α(TNF-α)分泌增加4.5至44倍。在CD33+细胞中,90.9±6.9%(平均值±标准差)为CD44+。然而,来自结肠黏膜的巨噬细胞仅显示出低水平的CD14(10.5±3.8%)、CD16(10.1±3.9%)、HLA-DR(27.3±9.2%)、CD11b(17.4±6.8%)、CD11c(17.8±10.4%)表达。此外,CD80(9.2±4.2%)和CD86(15.1±7.3%)的表达较低,这表明正常肠道巨噬细胞激活T细胞和T细胞介导的免疫反应的能力较低。我们得出结论,CD33可用于结肠巨噬细胞的分离和流式细胞术鉴定。这些细胞在正常黏膜中表现出单一表型(CD33++、CD44++、CD14-、CD16-、CD11b-、CD11c-、HLA-DR低、CD80-、CD86-),缺乏脂多糖(LPS)受体和共刺激分子。

相似文献

1
Isolation and phenotypic characterization of colonic macrophages.
Clin Exp Immunol. 1998 May;112(2):205-15. doi: 10.1046/j.1365-2249.1998.00557.x.
2
Alterations of the phenotype of colonic macrophages in inflammatory bowel disease.
Eur J Gastroenterol Hepatol. 1997 Sep;9(9):893-9. doi: 10.1097/00042737-199709000-00013.
3
T-cell co-stimulatory molecules are upregulated on intestinal macrophages from inflammatory bowel disease mucosa.
Eur J Gastroenterol Hepatol. 1999 Oct;11(10):1105-11. doi: 10.1097/00042737-199910000-00006.
7
Increased Th17-inducing activity of CD14+ CD163 low myeloid cells in intestinal lamina propria of patients with Crohn's disease.
Gastroenterology. 2013 Dec;145(6):1380-91.e1. doi: 10.1053/j.gastro.2013.08.049. Epub 2013 Aug 29.
8
Migration and maturation of human colonic dendritic cells.
J Immunol. 2001 Apr 15;166(8):4958-67. doi: 10.4049/jimmunol.166.8.4958.
9
Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes.
Clin Exp Immunol. 2006 Jul;145(1):190-9. doi: 10.1111/j.1365-2249.2006.03113.x.

引用本文的文献

1
VentX promotes tumor specific immunity and efficacy of immune checkpoint inhibitors.
iScience. 2023 Dec 14;27(1):108731. doi: 10.1016/j.isci.2023.108731. eCollection 2024 Jan 19.
2
The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy.
Cancers (Basel). 2024 Jan 10;16(2):289. doi: 10.3390/cancers16020289.
3
Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease.
J Diabetes Res. 2023 Dec 6;2023:8871677. doi: 10.1155/2023/8871677. eCollection 2023.
4
The Role of Mononuclear Phagocytes in the Testes and Epididymis.
Int J Mol Sci. 2022 Dec 20;24(1):53. doi: 10.3390/ijms24010053.
5
NF-κB-regulated VentX expression mediates tumoricidal effects of chemotherapeutics at noncytotoxic concentrations.
iScience. 2022 Oct 22;25(11):105426. doi: 10.1016/j.isci.2022.105426. eCollection 2022 Nov 18.
6
In vivo self-assembled siRNA as a modality for combination therapy of ulcerative colitis.
Nat Commun. 2022 Sep 28;13(1):5700. doi: 10.1038/s41467-022-33436-0.
7
CSF-1-induced DC-SIGN macrophages are present in the ovarian endometriosis.
Reprod Biol Endocrinol. 2022 Mar 8;20(1):48. doi: 10.1186/s12958-022-00901-w.

本文引用的文献

1
The mononuclear phagocyte-dendritic cell dichotomy: myths, facts, and a revised concept.
Clin Exp Immunol. 1996 Jul;105(1):1-9. doi: 10.1046/j.1365-2249.1996.d01-740.x.
4
Lymphocyte responses and cytokines.
Cell. 1994 Jan 28;76(2):241-51. doi: 10.1016/0092-8674(94)90332-8.
6
9
CD14-lipopolysaccharide receptor activity in hepatic macrophages after cholestatic liver injury.
Surgery. 1995 Aug;118(2):371-7. doi: 10.1016/s0039-6060(05)80347-2.
10
Distinct roles for the costimulatory ligands B7-1 and B7-2 in T helper cell differentiation?
Cell. 1995 Jun 30;81(7):979-82. doi: 10.1016/s0092-8674(05)80001-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验