Suppr超能文献

Maternal antioxidant treatments prevent diabetes-induced alterations of mitochondrial morphology in rat embryos.

作者信息

Yang X, Borg L A, Simán C M, Eriksson U J

机构信息

Department of Medical Cell Biology, University of Uppsala, Sweden.

出版信息

Anat Rec. 1998 Jul;251(3):303-15. doi: 10.1002/(SICI)1097-0185(199807)251:3<303::AID-AR5>3.0.CO;2-W.

Abstract

Previous studies have suggested that production of reactive oxygen species by embryonic mitochondria may have a role in the induction of both high-amplitude mitochondrial swelling and embryonic dysmorphogenesis in diabetic pregnancy. The present study analyzed the relationships between a putative metabolite-induced production of free oxygen radicals, mitochondrial lipid peroxidation, and high-amplitude mitochondrial swelling in embryos during organogenesis. For studies in vitro, day 9 embryos of normal rats were cultured for 48 h with a high concentration of glucose in the absence or presence of alpha-cyano-4-hydroxycinnamic acid (CHC), a mitochondrial pyruvate transport inhibitor. The morphology of mitochondria in the neuroepithelium of the embryos was studied with the aid of transmission electron microscopy. For studies in vivo, normal and diabetic pregnant rats were fed a diet supplemented with the antioxidants alpha-tocopherol (vitamin E) or 2,6-di-tert-butyl-4-methylphenol (BHT), and the ultrastructure of mitochondria in the embryonic neuroepithelium and in the visceral yolk sac was investigated on gestational day 11. Exposure to a high concentration of glucose in vitro or to maternal diabetes in vivo induced high-amplitude swelling of mitochondria in the neuroepithelium of the embryos. The swelling of mitochondria was prevented by addition of CHC to the culture media or by maternal ingestion of antioxidant-supplemented food. In diabetic pregnancy, embryonic mitochondria during organogenesis produce free oxygen radicals that cause mitochondrial lipid peroxidation and swelling and furthermore embryonic dysmorphogenesis. Dietary supplementation with antioxidants to the mother may prevent embryonic malformations in diabetic pregnancy by inhibition of mitochondrial dysfunction.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验