Suppr超能文献

一种使用T1造影剂的MRI对比增强模型。

A model for MRI contrast enhancement using T1 agents.

作者信息

Ahrens E T, Rothbächer U, Jacobs R E, Fraser S E

机构信息

Beckman Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8443-8. doi: 10.1073/pnas.95.15.8443.

Abstract

Contrast in MRI relies on differences in the local environment of water and is often enhanced by using contrast agents. We present a simple model for evaluating the minimal contrast agent concentration required to produce "satisfactory" contrast enhancement in magnetic resonance images. Previous strategies have been based largely on empirical results for specific systems. The present tissue contrast model (TCM) can be applied to "conventional," targeted, or biochemically responsive agents. The model results are formulated so that only a small number of parameters are required to analyze a given scenario. The TCM is a particularly useful tool in the development of new classes of magnetic resonance contrast media. These agents will have the ability to target specific cells or tissue, and perhaps be able to report on their physiological status. As an example of the applicability of the TCM, we test it against in vivo magnetic resonance microscopy results in frog embryos that have focal cell populations labeled with contrast agent by using calibrated single-cell microinjection techniques.

摘要

磁共振成像(MRI)中的对比度依赖于水的局部环境差异,并且通常通过使用造影剂来增强。我们提出了一个简单的模型,用于评估在磁共振图像中产生“满意”对比度增强所需的最小造影剂浓度。以前的策略很大程度上基于特定系统的经验结果。当前的组织对比度模型(TCM)可应用于“传统”、靶向或生化响应性造影剂。该模型结果的制定方式使得分析给定场景仅需要少量参数。TCM是开发新型磁共振造影剂的特别有用的工具。这些造影剂将能够靶向特定细胞或组织,并且或许能够报告它们的生理状态。作为TCM适用性的一个例子,我们通过使用校准的单细胞显微注射技术,将其与对青蛙胚胎进行的体内磁共振显微镜检查结果进行对比测试,这些青蛙胚胎中有局部细胞群体用造影剂标记。

相似文献

1
A model for MRI contrast enhancement using T1 agents.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8443-8. doi: 10.1073/pnas.95.15.8443.
2
Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles.
Colloids Surf B Biointerfaces. 2015 Jul 1;131:148-54. doi: 10.1016/j.colsurfb.2015.04.047. Epub 2015 Apr 29.
4
MRI contrast agents: Classification and application (Review).
Int J Mol Med. 2016 Nov;38(5):1319-1326. doi: 10.3892/ijmm.2016.2744. Epub 2016 Sep 21.
5
Theoretical MRI contrast model for exogenous T2 agents.
Magn Reson Med. 2007 Feb;57(2):442-7. doi: 10.1002/mrm.21145.
6
7
Evaluation of Motexafin gadolinium (MGd) as a contrast agent for intraoperative MRI.
Minim Invasive Neurosurg. 2007 Dec;50(6):318-23. doi: 10.1055/s-2007-993158.
9
Gadolinium-free T1 contrast agents for MRI: tunable pharmacokinetics of a new class of manganese porphyrins.
J Magn Reson Imaging. 2014 Dec;40(6):1474-80. doi: 10.1002/jmri.24483. Epub 2013 Nov 8.
10
Contrast agents: magnetic resonance.
Handb Exp Pharmacol. 2008(185 Pt 1):135-65. doi: 10.1007/978-3-540-72718-7_7.

引用本文的文献

1
Longitudinal manganese-enhanced magnetic resonance imaging of neural projections and activity.
NMR Biomed. 2022 Jun;35(6):e4675. doi: 10.1002/nbm.4675. Epub 2022 Mar 6.
3
Effect of Magnetic Coupling on Water Proton Relaxivity in a Series of Transition Metal Gd Complexes.
Inorg Chem. 2018 May 21;57(10):5810-5819. doi: 10.1021/acs.inorgchem.8b00120. Epub 2018 May 1.
4
Synthesis and evaluation of MR probes for targeted-reporter imaging.
Chem Sci. 2017 Aug 1;8(8):5764-5768. doi: 10.1039/c7sc02217d. Epub 2017 Jun 13.
5
A biomarker-responsive T MRI contrast agent.
Magn Reson Med. 2017 Apr;77(4):1665-1670. doi: 10.1002/mrm.26250. Epub 2016 Apr 19.
6
Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection.
Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):95-115. doi: 10.1146/annurev-anchem-071015-041514. Epub 2016 Mar 30.
9
A review of responsive MRI contrast agents: 2005-2014.
Contrast Media Mol Imaging. 2015 Jul-Aug;10(4):245-65. doi: 10.1002/cmmi.1629. Epub 2014 Oct 29.
10
Detecting enzyme activities with exogenous MRI contrast agents.
Chemistry. 2014 Aug 4;20(32):9840-50. doi: 10.1002/chem.201402474. Epub 2014 Jul 2.

本文引用的文献

1
Receptor-targeted co-transport of DNA and magnetic resonance contrast agents.
Chem Biol. 1995 Sep;2(9):615-20. doi: 10.1016/1074-5521(95)90126-4.
3
Relaxation of solvent protons by solute Gd3+-chelates revisited.
Magn Reson Med. 1997 May;37(5):730-5. doi: 10.1002/mrm.1910370515.
4
Water diffusion and exchange as they influence contrast enhancement.
J Magn Reson Imaging. 1997 Jan-Feb;7(1):102-10. doi: 10.1002/jmri.1880070114.
5
Physiologic measurements by contrast-enhanced MR imaging: expectations and limitations.
J Magn Reson Imaging. 1997 Jan-Feb;7(1):82-90. doi: 10.1002/jmri.1880070112.
6
Studies of Gd-DTPA relaxivity and proton exchange rates in tissue.
Magn Reson Med. 1994 Jul;32(1):66-76. doi: 10.1002/mrm.1910320110.
7
MR lymphography with a lymphotropic T1-type MR contrast agent: Gd-DTPA-PGM.
Magn Reson Med. 1995 Jan;33(1):88-92. doi: 10.1002/mrm.1910330113.
8
Magnetic resonance microscopy of embryonic cell lineages and movements.
Science. 1994 Feb 4;263(5147):681-4. doi: 10.1126/science.7508143.
9
Signal, noise, and contrast in nuclear magnetic resonance (NMR) imaging.
J Comput Assist Tomogr. 1983 Jun;7(3):391-401. doi: 10.1097/00004728-198306000-00001.
10
Selection of pulse sequences producing maximum tissue contrast in magnetic resonance imaging.
Magn Reson Imaging. 1984;2(4):285-94. doi: 10.1016/0730-725x(84)90194-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验