McCann J, Dietrich F, Rafferty C
Research Consultant, 5537 East Highway 89, Kanab, UT 84741, USA.
Mutat Res. 1998 Aug;411(1):45-86. doi: 10.1016/s1383-5742(98)00006-4.
We review 23 studies on the potential genotoxicity of electric and magnetic fields that have appeared in the published literature since our 1993 review of 55 published studies (McCann et al., Mutat. Res. 297 (1993) 61-95) and six additional studies published prior to 1993, which were not previously reviewed. As in our previous review, internal electric fields present in media (for in vitro experiments) and in the torso (for in vivo experiments) were estimated. Individual experiments are evaluated using basic data quality criteria. The potential for genotoxicity of electric and magnetic fields is discussed in light of the significant body of genotoxicity data that now exists. Three unsuccessful attempts to replicate previously reported positive results have appeared since our previous review. We conclude that, in spite of the 34 studies reviewed in this and our previous publication that report positive genotoxic effects, none satisfy all of three basic conditions: independent reproducibility, consistency with the scientific knowledge base, and completeness according to basic data quality criteria. As we discuss, these criteria are satisfied for several groups of negative studies in several exposure categories (ELF magnetic fields, 150 microT-5 mT, combined ELF electric and ELF magnetic fields, approx. 0.2 mT, 240 mV/m, and static magnetic fields, 1-3.7 T). The evidence reviewed here strengthens the conclusion of our previous review, that the preponderance of evidence suggests that ELF electric or magnetic fields do not have genotoxic potential. Nevertheless, a pool of positive results remains, which have not yet been tested by independent replication. Among the 12 studies reviewed here, which report statistically significant or suggestive positive results, we point particularly to results from five laboratories [J. Miyakoshi, N. Yamagishi, S. Ohtsu, K. Mohri, H. Takebe, Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to high-density 50-Hz magnetic fields, Mutat. Res. 349 (1996) 109-114; J. Miyakoshi, K. Kitagawa, H. Takebe, Mutation induction by high-density, 50-Hz magnetic fields in human MeWo cells exposed in the DNA synthesis phase, Int. J. Radiat. Biol. 71 (1997) 75-79; H. Lai. N.P. Singh, Acute exposure to a 60-Hz magnetic field increases DNA strand breaks in rat brain cells, Bioelectromagnetics, 18 (1997) 156-165; H. Lai, N.P. Singh, Melatonin and N-tert-butyl-alpha-phenylnitrone block 60-Hz magnetic field-induced DNA single and double strand breaks in rat brain cells, J. Pineal Res. 22 (1997) 152-162; T. Koana, M. Ikehata, M. Nakagawa, Estimation of genetic effects of a static magnetic field by a somatic cell test using mutagen-sensitive mutants of Drosophila melanogaster, Bioelectrochem. Bioenergetics 36 (1995) 95-100; F.L. Tabrah, H.F. Mower, S. Batkin, P.B. Greenwood, Enhanced mutagenic effect of a 60-Hz time-varying magnetic field on numbers of azide-induced TA100 revertant colonies, Bioelectromagnetics 15 (1994) 85-93; S. Tofani, A. Ferrara, L. Anglesio, G. Gilli, Evidence for genotoxic effects of resonant ELF magnetic fields, Bioelectrochem. Bioenergetics, 36 (1995) 9-13], which satisfy most basic data quality criteria and may be of interest.
自我们1993年对55项已发表研究(McCann等人,《突变研究》297 (1993) 61 - 95)进行综述以及另外6项1993年之前发表但此前未被综述的研究以来,我们对已发表文献中有关电场和磁场潜在遗传毒性的23项研究进行了综述。与我们之前的综述一样,估算了(用于体外实验的)介质中和(用于体内实验的)躯干中存在的内部电场。使用基本数据质量标准对各项实验进行评估。鉴于目前已有的大量遗传毒性数据,对电场和磁场的遗传毒性潜力进行了讨论。自我们上次综述以来,出现了三次复制先前报道的阳性结果但未成功的尝试。我们得出结论,尽管在本次及我们之前的出版物中综述的34项研究报告了阳性遗传毒性效应,但没有一项满足以下所有三个基本条件:独立可重复性、与科学知识库的一致性以及根据基本数据质量标准的完整性。正如我们所讨论的,几组阴性研究在几个暴露类别(极低频磁场,150 μT - 5 mT;极低频电场和极低频磁场组合,约0.2 mT,240 mV/m;以及静磁场,1 - 3.7 T)中满足这些标准。此处综述的证据强化了我们之前综述的结论,即大量证据表明极低频电场或磁场没有遗传毒性潜力。然而,仍有一批阳性结果,尚未通过独立复制进行检验。在本次综述的12项报告具有统计学显著或提示性阳性结果的研究中,我们特别指出五个实验室的结果[J. Miyakoshi,N. Yamagishi,S. Ohtsu,K. Mohri,H. Takebe,《暴露于高密度50 Hz磁场下次黄嘌呤 - 鸟嘌呤磷酸核糖基转移酶基因突变增加》,《突变研究》349 (1996) 109 - 114;J. Miyakoshi,K. Kitagawa,H. Takebe,《处于DNA合成期的人MeWo细胞暴露于高密度50 Hz磁场下的突变诱导》,《国际辐射生物学杂志》71 (1997) 75 - 79;H. Lai,N.P. Singh,《急性暴露于60 Hz磁场增加大鼠脑细胞中的DNA链断裂》,《生物电磁学》,18 (1997) 156 - 165;H. Lai,N.P. Singh,《褪黑素和N - 叔丁基 - α - 苯基硝酮阻断60 Hz磁场诱导的大鼠脑细胞中的DNA单链和双链断裂》,《松果体研究杂志》22 (1997) 152 - 162;T. Koana,M. Ikehata,M. Nakagawa,《使用果蝇黑腹果蝇的诱变敏感突变体通过体细胞试验估算静磁场的遗传效应》,《生物电化学与生物能量学》36 (1995) 95 - 100;F.L. Tabrah,H.F. Mower,S. Batkin,P.B. Greenwood,《60 Hz时变磁场对叠氮化物诱导的TA100回复菌落数量的诱变作用增强》,《生物电磁学》15 (1994) 85 - 93;S. Tofani,A. Ferrara,L. Anglesio,G. Gilli,《共振极低频磁场遗传毒性效应的证据》,《生物电化学与生物能量学》,36 (1995) 9 - 13],这些结果满足大多数基本数据质量标准,可能值得关注。