Suppr超能文献

海马体可塑性涉及广泛的基因诱导和多种细胞机制。

Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms.

作者信息

Hevroni D, Rattner A, Bundman M, Lederfein D, Gabarah A, Mangelus M, Silverman M A, Kedar H, Naor C, Kornuc M, Hanoch T, Seger R, Theill L E, Nedivi E, Richter-Levin G, Citri Y

机构信息

Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel.

出版信息

J Mol Neurosci. 1998 Apr;10(2):75-98. doi: 10.1007/BF02737120.

Abstract

Long-term plasticity of the central nervous system (CNS) involves induction of a set of genes whose identity is incompletely characterized. To identify candidate plasticity-related genes (CPGs), we conducted an exhaustive screen for genes that undergo induction or downregulation in the hippocampus dentate gyrus (DG) following animal treatment with the potent glutamate analog, kainate. The screen yielded 362 upregulated CPGs and 41 downregulated transcripts (dCPGs). Of these, 66 CPGs and 5 dCPGs are known genes that encode for a variety of signal transduction proteins, transcription factors, and structural proteins. Seven novel CPGs predict the following putative functions: cpg2--a dystrophin-like cytoskeletal protein; cpg4--a heat-shock protein: cpg16--a protein kinase; cpg20--a transcription factor; cpg21--a dual-specificity MAP-kinase phosphatase; and cpg30 and cpg38--two new seven-transmembrane domain receptors. Experiments performed in vitro and with cultured hippocampal cells confirmed the ability of the cpg-21 product to inactivate the MAP-kinase. To test relevance to neural plasticity, 66 CPGs were tested for induction by stimuli producing long-term potentiation (LTP). Approximately one-fourth of the genes examined were upregulated by LTP. These results indicate that an extensive genetic response is induced in mammalian brain after glutamate receptor activation, and imply that a significant proportion of this activity is coinduced by LTP. Based on the identified CPGs, it is conceivable that multiple cellular mechanisms underlie long-term plasticity of the nervous system.

摘要

中枢神经系统(CNS)的长期可塑性涉及一组基因的诱导,但其具体身份尚未完全明确。为了识别与可塑性相关的候选基因(CPG),我们对在用强效谷氨酸类似物海藻酸处理动物后海马齿状回(DG)中发生诱导或下调的基因进行了详尽筛选。筛选出362个上调的CPG和41个下调的转录本(dCPG)。其中,66个CPG和5个dCPG是已知基因,它们编码各种信号转导蛋白、转录因子和结构蛋白。7个新的CPG预测具有以下假定功能:cpg2——一种肌营养不良蛋白样细胞骨架蛋白;cpg4——一种热休克蛋白;cpg16——一种蛋白激酶;cpg20——一种转录因子;cpg21——一种双特异性丝裂原活化蛋白激酶磷酸酶;以及cpg30和cpg38——两种新的七跨膜结构域受体。在体外和培养的海马细胞中进行的实验证实了cpg - 21产物使丝裂原活化蛋白激酶失活的能力。为了测试与神经可塑性的相关性,对66个CPG进行了通过产生长时程增强(LTP)的刺激诱导的测试。大约四分之一的检测基因被LTP上调。这些结果表明,谷氨酸受体激活后哺乳动物大脑中会诱导广泛的基因反应,这意味着该活动的很大一部分是由LTP共同诱导的。基于已鉴定的CPG,可以想象多种细胞机制是神经系统长期可塑性的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验