Suppr超能文献

将溶壁酶靶向革兰氏阳性菌的细胞分裂位点:重复结构域将自溶素导向金黄色葡萄球菌的赤道面环。

Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus.

作者信息

Baba T, Schneewind O

机构信息

Department of Microbiology and Immunology, UCLA School of Medicine, University of California, Los Angeles, CA 90095, USA.

出版信息

EMBO J. 1998 Aug 17;17(16):4639-46. doi: 10.1093/emboj/17.16.4639.

Abstract

Staphylococcus aureus secretes autolysin (Atl) to complete cell division by hydrolyzing its thick cell wall layer at a designated site, known as the equatorial surface ring. Secreted pro-Atl (1256 amino acids) is cleaved at residues 198 and 775 to generate a pro-peptide, amidase and glucosaminidase, respectively. Here we examined the mechanism that directs amidase and glucosaminidase to the cell division site on the staphylococcal surface. Targeting of pro-Atl to the cell surface occurred prior to its proteolytic processing. Three repeat domains (R1, R2 and R3) located at the center of pro-Atl are necessary and sufficient for the targeting of reporter proteins to the equatorial surface ring. Pro-Atl cleavage at residue 775 separates the polypeptide such that R1 and R2 are linked to the C-terminus of amidase, whereas R3 is located at the N-terminus of glucosaminidase. Thus, it appears that the repeat domains direct pro-Atl, amidase and glucosaminidase to a specific receptor at the equatorial surface ring of staphylococci, thereby allowing localized peptidoglycan hydrolysis and separation of the dividing cells.

摘要

金黄色葡萄球菌分泌自溶素(Atl),通过在称为赤道面环的指定位点水解其厚厚的细胞壁层来完成细胞分裂。分泌的前体Atl(1256个氨基酸)在第198位和第775位残基处被切割,分别产生一个前肽、酰胺酶和氨基葡萄糖苷酶。在这里,我们研究了将酰胺酶和氨基葡萄糖苷酶引导至葡萄球菌表面细胞分裂位点的机制。前体Atl靶向细胞表面发生在其蛋白水解加工之前。位于前体Atl中心的三个重复结构域(R1、R2和R3)对于将报告蛋白靶向赤道面环是必要且充分的。前体Atl在第775位残基处的切割使多肽分离,使得R1和R2与酰胺酶的C末端相连,而R3位于氨基葡萄糖苷酶的N末端。因此,似乎重复结构域将前体Atl、酰胺酶和氨基葡萄糖苷酶引导至葡萄球菌赤道面环处的特定受体,从而允许局部肽聚糖水解和分裂细胞的分离。

相似文献

2
Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl.
Mol Microbiol. 2010 Feb;75(4):864-73. doi: 10.1111/j.1365-2958.2009.07007.x. Epub 2010 Jan 25.
5
An autolysin ring associated with cell separation of Staphylococcus aureus.
J Bacteriol. 1996 Mar;178(6):1565-71. doi: 10.1128/jb.178.6.1565-1571.1996.
6
Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus.
Microbiol Immunol. 1997;41(6):469-79. doi: 10.1111/j.1348-0421.1997.tb01880.x.
7
Activity of the major staphylococcal autolysin Atl.
FEMS Microbiol Lett. 2006 Jun;259(2):260-8. doi: 10.1111/j.1574-6968.2006.00281.x.
8
Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition.
J Bacteriol. 2012 Aug;194(15):3789-802. doi: 10.1128/JB.00331-12. Epub 2012 May 18.
9
Molecular characterization of an atl null mutant of Staphylococcus aureus.
Microbiol Immunol. 2002;46(9):601-12. doi: 10.1111/j.1348-0421.2002.tb02741.x.

引用本文的文献

1
Characterization of the major autolysin (AtlC) of Staphylococcus carnosus.
BMC Microbiol. 2024 Mar 8;24(1):77. doi: 10.1186/s12866-024-03231-6.
3
6
The Staphylococcal Cell Wall.
Microbiol Spectr. 2019 Jul;7(4). doi: 10.1128/microbiolspec.GPP3-0068-2019.
7
Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria.
J Innate Immun. 2019;11(4):303-315. doi: 10.1159/000496033. Epub 2019 Feb 27.
9
Human antibody responses against non-covalently cell wall-bound Staphylococcus aureus proteins.
Sci Rep. 2018 Feb 19;8(1):3234. doi: 10.1038/s41598-018-21724-z.
10
Lysibodies are IgG Fc fusions with lysin binding domains targeting wall carbohydrates for effective phagocytosis.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4781-4786. doi: 10.1073/pnas.1619249114. Epub 2017 Apr 20.

本文引用的文献

1
LYSOSTAPHIN: A NEW BACTERIOLYTIC AGENT FOR THE STAPHYLOCOCCUS.
Proc Natl Acad Sci U S A. 1964 Mar;51(3):414-21. doi: 10.1073/pnas.51.3.414.
2
Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity.
Trends Microbiol. 1998 Feb;6(2):66-71. doi: 10.1016/S0966-842X(97)01196-7.
3
Subcellular localization of the major autolysin, ATL and its processed proteins in Staphylococcus aureus.
Microbiol Immunol. 1997;41(6):469-79. doi: 10.1111/j.1348-0421.1997.tb01880.x.
4
Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface.
Mol Microbiol. 1997 Jun;24(5):1013-24. doi: 10.1046/j.1365-2958.1997.4101774.x.
6
An autolysin ring associated with cell separation of Staphylococcus aureus.
J Bacteriol. 1996 Mar;178(6):1565-71. doi: 10.1128/jb.178.6.1565-1571.1996.
7
Cell wall sorting signals in surface proteins of gram-positive bacteria.
EMBO J. 1993 Dec;12(12):4803-11. doi: 10.1002/j.1460-2075.1993.tb06169.x.
10
Transport and processing of staphylococcal enterotoxin B.
J Bacteriol. 1983 Jan;153(1):297-303. doi: 10.1128/jb.153.1.297-303.1983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验