Suppr超能文献

一种基于放射科医生排名的数字化乳腺钼靶片乳腺密度指数。

A breast density index for digital mammograms based on radiologists' ranking.

作者信息

Boone J M, Lindfors K K, Beatty C S, Seibert J A

机构信息

Department of Radiology, University of California, Davis, USA.

出版信息

J Digit Imaging. 1998 Aug;11(3):101-15. doi: 10.1007/BF03168733.

Abstract

The purpose of this study was to develop and evaluate a computerized method of calculating a breast density index (BDI) from digitized mammograms that was designed specifically to model radiologists' perception of breast density. A set of 153 pairs of digitized mammograms (cranio-caudal, CC, and mediolateral oblique, MLO, views) were acquired and preprocessed to reduce detector biases. The sets of mammograms were ordered on an ordinal scale (a scale based only on relative rank-ordering) by two radiologists, and a cardinal (an absolute numerical score) BDI value was calculated from the ordinal ranks. The images were also assigned cardinal BDI values by the radiologists in a subsequent session. Six mathematical features (including fractal dimension and others) were calculated from the digital mammograms, and were used in conjunction with single value decomposition and multiple linear regression to calculate a computerized BDI. The linear correlation coefficient between different ordinal ranking sessions were as follows: intraradiologist intraprojection (CC/CC): r = 0.978; intraradiologist interprojection (CC/MLO): r = 0.960; and interradiologist intraprojection (CC/CC): r = 0.968. A separate breast density index was derived from three separate ordinal rankings by one radiologist (two with CC views, one with the MLO view). The computer derived BDI had a correlation coefficient (r) of 0.907 with the radiologists' ordinal BDI. A comparison between radiologists using a cardinal scoring system (which is closest to how radiologists actually evaluate breast density) showed r = 0.914. A breast density index calculated by a computer but modeled after radiologist perception of breast density may be valuable in objectively measuring breast density. Such a metric may prove valuable in numerous areas, including breast cancer risk assessment and in evaluating screening techniques specifically designed to improve imaging of the dense breast.

摘要

本研究的目的是开发并评估一种从数字化乳腺X线照片计算乳腺密度指数(BDI)的计算机化方法,该方法专门用于模拟放射科医生对乳腺密度的认知。获取了153对数字化乳腺X线照片(头尾位,CC,以及内外斜位,MLO)并进行预处理以减少探测器偏差。两组乳腺X线照片由两名放射科医生按顺序量表(仅基于相对排名顺序的量表)进行排序,并根据顺序排名计算出一个基数(绝对数值分数)BDI值。在随后的环节中,放射科医生也为这些图像赋予了基数BDI值。从数字化乳腺X线照片中计算出六个数学特征(包括分形维数等),并结合奇异值分解和多元线性回归来计算计算机化BDI。不同顺序排名环节之间的线性相关系数如下:放射科医生内部投影内(CC/CC):r = 0.978;放射科医生内部投影间(CC/MLO):r = 0.960;以及放射科医生间投影内(CC/CC):r = 0.968。一名放射科医生从三个单独的顺序排名中得出了一个单独的乳腺密度指数(两个CC位视图,一个MLO位视图)。计算机得出的BDI与放射科医生的顺序BDI的相关系数(r)为0.907。使用基数评分系统(最接近放射科医生实际评估乳腺密度的方式)的放射科医生之间的比较显示r = 0.914。一种由计算机计算但以放射科医生对乳腺密度的认知为模型的乳腺密度指数,可能在客观测量乳腺密度方面具有价值。这样一种指标可能在许多领域都具有价值,包括乳腺癌风险评估以及评估专门设计用于改善致密乳腺成像的筛查技术。

相似文献

本文引用的文献

7
Neural networks at the crossroads.处于十字路口的神经网络。
Radiology. 1993 Nov;189(2):357-9. doi: 10.1148/radiology.189.2.8210359.
10
Sidetracked at the crossroads.在十字路口偏离正轨。
Radiology. 1994 Oct;193(1):28-30. doi: 10.1148/radiology.193.1.8090909.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验