Suppr超能文献

染色体编码的二氢叶酸还原酶中的保守氨基酸突变赋予肺炎链球菌对甲氧苄啶的抗性。

A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae.

作者信息

Pikis A, Donkersloot J A, Rodriguez W J, Keith J M

机构信息

Vaccine and Therapeutic Development Section, Oral Infection and Immunity Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892-4350, USA.

出版信息

J Infect Dis. 1998 Sep;178(3):700-6. doi: 10.1086/515371.

Abstract

Multidrug-resistant Streptococcus pneumoniae strains have emerged over the past decade at an alarming rate. The molecular mechanism of trimethoprim resistance was investigated in 5 pneumococcal strains isolated in the Washington, DC, area from patients with invasive infections. Cloning and sequencing of the trimethoprim resistance determinant from these pneumococci indicated that an altered chromosome-encoded dihydrofolate reductase (DHFR) was responsible for the observed resistance. Comparison of DHFR sequences from pneumococcal strains with various susceptibilities to trimethoprim, together with site-directed mutagenesis, revealed that substitution of isoleucine-100 with a leucine residue resulted in trimethoprim resistance. Hydrogen bonding between the carbonyl oxygen of isoleucine-100 and the 4-amino group of trimethoprim is proposed to play a critical role in the inhibition of DHFR by trimethoprim. This enzyme-substrate model should facilitate the design of new antibacterial agents with improved activity against S. pneumoniae.

摘要

在过去十年中,多重耐药肺炎链球菌菌株以惊人的速度出现。对从华盛顿特区地区患有侵袭性感染的患者中分离出的5株肺炎球菌菌株的甲氧苄啶耐药分子机制进行了研究。对这些肺炎球菌的甲氧苄啶耐药决定簇进行克隆和测序表明,染色体编码的二氢叶酸还原酶(DHFR)改变是观察到的耐药性的原因。对具有不同甲氧苄啶敏感性的肺炎球菌菌株的DHFR序列进行比较,并结合定点诱变,发现异亮氨酸-100被亮氨酸残基取代导致了甲氧苄啶耐药。异亮氨酸-100的羰基氧与甲氧苄啶的4-氨基之间的氢键被认为在甲氧苄啶抑制DHFR中起关键作用。这种酶-底物模型应有助于设计对肺炎链球菌具有更高活性的新型抗菌剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验