Suppr超能文献

酿酒酵母中的错义翻译错误。

Missense translation errors in Saccharomyces cerevisiae.

作者信息

Stansfield I, Jones K M, Herbert P, Lewendon A, Shaw W V, Tuite M F

机构信息

Research School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK.

出版信息

J Mol Biol. 1998 Sep 11;282(1):13-24. doi: 10.1006/jmbi.1998.1976.

Abstract

We describe the development of a novel plasmid-based assay for measuring the in vivo frequency of misincorporation of amino acids into polypeptide chains in the yeast Saccharomyces cerevisiae. The assay is based upon the measurement of the catalytic activity of an active site mutant of type III chloramphenicol acetyl transferase (CATIII) expressed in S. cerevisiae. A His195(CAC)-->Tyr195(UAC) mutant of CATIII is completely inactive, but catalytic activity can be restored by misincorporation of histidine at the mutant UAC codon. The average error frequency of misincorporation of histidine at this tyrosine UAC codon in wild-type yeast strains was measured as 0. 5x10(-5) and this frequency was increased some 50-fold by growth in the presence of paromomycin, a known translational-error-inducing antibiotic. A detectable frequency of misincorporation of histidine at a mutant Ala195 GCU codon was also measured as 2x10(-5), but in contrast to the Tyr195-->His195 misincorporation event, the frequency of histidine misincorporation at Ala195 GCU was not increased by paromomycin, inferring that this error did not result from miscognate codon-anticodon interaction. The His195 to Tyr195 missense error assay was used to demonstrate increased frequencies of missense error at codon 195 in SUP44 and SUP46 mutants. These two mutants have previously been shown to exhibit a translation termination error phenotype and the sup44+ and sup46+ genes encode the yeast ribosomal proteins S4 and S9, respectively. These data represent the first accurate in vivo measurement of a specific mistranslation event in a eukaryotic cell and directly confirm that the eukaryotic ribosome plays an important role in controlling missense errors arising from non-cognate codon-anticodon interactions.

摘要

我们描述了一种基于质粒的新型检测方法的开发,用于测量氨基酸错误掺入酿酒酵母多肽链中的体内频率。该检测方法基于对在酿酒酵母中表达的III型氯霉素乙酰转移酶(CATIII)活性位点突变体的催化活性的测量。CATIII的His195(CAC)→Tyr195(UAC)突变体完全无活性,但通过在突变的UAC密码子处错误掺入组氨酸可恢复催化活性。在野生型酵母菌株中,该酪氨酸UAC密码子处组氨酸错误掺入的平均错误频率测定为0.5×10⁻⁵,并且在已知的诱导翻译错误的抗生素巴龙霉素存在下生长时,该频率增加了约50倍。在突变的Ala195 GCU密码子处组氨酸错误掺入的可检测频率也测定为2×10⁻⁵,但与Tyr195→His195错误掺入事件相反,巴龙霉素并未增加Ala195 GCU处组氨酸错误掺入的频率,这表明该错误并非由错配的密码子-反密码子相互作用导致。His195至Tyr195错义错误检测方法用于证明SUP44和SUP46突变体中第195位密码子处错义错误频率增加。先前已表明这两个突变体表现出翻译终止错误表型,并且sup44⁺和sup46⁺基因分别编码酵母核糖体蛋白S4和S9。这些数据代表了真核细胞中特定错译事件的首次精确体内测量,并直接证实真核核糖体在控制由非同源密码子-反密码子相互作用引起的错义错误中起重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验