Köhn J, Wörgötter F
Department of Neurophysiology, Ruhr-Universität, Bochum, Germany.
Neural Comput. 1998 Oct 1;10(7):1639-51. doi: 10.1162/089976698300017061.
Calculation of the total conductance change induced by multiple synapses at a given membrane compartment remains one of the most time-consuming processes in biophysically realistic neural network simulations. Here we show that this calculation can be achieved in a highly efficient way even for multiply converging synapses with different delays by means of the zeta-transform. Using the example of an NMDA synapse, we show that every update of the total conductance is achieved by an iterative process requiring at most three recent multiplications, which together need only the history values from the two most recent iterations. A major advantage is that this small computational load is independent of the number of synapses simulated. A benchmark comparison to other techniques demonstrates superior performance of the zeta-transform. Nonvoltage-dependent synaptic channels can be treated similarly (Olshausen, 1990; Brettle & Niebur, 1994), and the technique can also be generalized to other synaptic channels.
在生物物理逼真的神经网络模拟中,计算给定膜隔室处多个突触引起的总电导变化仍然是最耗时的过程之一。在这里,我们表明,即使对于具有不同延迟的多重汇聚突触,借助ζ变换也可以高效地完成此计算。以NMDA突触为例,我们表明总电导的每次更新都通过一个迭代过程来实现,该过程最多需要最近的三次乘法,而这三次乘法总共只需要最近两次迭代的历史值。一个主要优点是,这种小的计算负载与模拟的突触数量无关。与其他技术的基准比较表明了ζ变换的优越性能。非电压依赖性突触通道也可以类似地处理(奥尔沙森,1990年;布雷特尔和尼布尔,1994年),并且该技术还可以推广到其他突触通道。