Suppr超能文献

参与大肠杆菌K-12 WaaO(RfaI)催化机制的保守结构区域。

Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI).

作者信息

Shibayama K, Ohsuka S, Tanaka T, Arakawa Y, Ohta M

机构信息

Department of Bacteriology, School of Medicine, Nagoya University, Nagoya, 466-8550, Japan.

出版信息

J Bacteriol. 1998 Oct;180(20):5313-8. doi: 10.1128/JB.180.20.5313-5318.1998.

Abstract

Escherichia coli K-12 WaaO (formerly known as RfaI) is a nonprocessive alpha-1,3 glucosyltransferase, involved in the synthesis of the R core of lipopolysaccharide. By comparing the amino acid sequence of WaaO with those of 11 homologous alpha-glycosyltransferases, four strictly conserved regions, I, II, III, and IV, were identified. Since functionally related transferases are predicted to have a similar architecture in the catalytic sites, it is assumed that these four regions are directly involved in the formation of alpha-glycosidic linkage from alpha-linked nucleotide diphospho-sugar donor. Hydrophobic cluster analysis revealed a conserved domain at the N termini of these alpha-glycosyltransferases. This domain was similar to that previously reported for beta-glycosyltransferases. Thus, this domain is likely to be involved in the formation of beta-glycosidic linkage between the donor sugar and the enzyme at the first step of the reaction. Site-directed mutagenesis analysis of E. coli K-12 WaaO revealed four critical amino acid residues.

摘要

大肠杆菌K-12 WaaO(以前称为RfaI)是一种非持续性α-1,3葡糖基转移酶,参与脂多糖R核心的合成。通过将WaaO的氨基酸序列与11种同源α-糖基转移酶的序列进行比较,确定了四个严格保守的区域,即I、II、III和IV。由于功能相关的转移酶预计在催化位点具有相似的结构,因此假定这四个区域直接参与由α-连接的核苷酸二磷酸糖供体形成α-糖苷键。疏水簇分析揭示了这些α-糖基转移酶N末端的一个保守结构域。该结构域与先前报道的β-糖基转移酶的结构域相似。因此,该结构域可能在反应的第一步参与供体糖与酶之间β-糖苷键的形成。对大肠杆菌K-12 WaaO的定点诱变分析揭示了四个关键氨基酸残基。

相似文献

1
Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI).
J Bacteriol. 1998 Oct;180(20):5313-8. doi: 10.1128/JB.180.20.5313-5318.1998.
2
Four critical aspartic acid residues potentially involved in the catalytic mechanism of Escherichia coli K-12 WaaR.
FEMS Microbiol Lett. 1999 May 1;174(1):105-9. doi: 10.1111/j.1574-6968.1999.tb13555.x.
4
Conserved domains of glycosyltransferases.
Glycobiology. 1999 Oct;9(10):961-78. doi: 10.1093/glycob/9.10.961.
6
Probing suggested catalytic domains of glycosyltransferases by site-directed mutagenesis.
Eur J Biochem. 2003 Feb;270(3):533-8. doi: 10.1046/j.1432-1033.2003.03409.x.
10
Characterization of a trifunctional glucosyltransferase essential for Moraxella catarrhalis lipooligosaccharide assembly.
Glycobiology. 2013 Aug;23(8):1013-21. doi: 10.1093/glycob/cwt042. Epub 2013 May 29.

引用本文的文献

1
and selection and cost of bacteriophage resistance on natural .
Microlife. 2025 Aug 11;6:uqaf017. doi: 10.1093/femsml/uqaf017. eCollection 2025.
2
Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant .
Front Microbiol. 2023 May 12;14:1194435. doi: 10.3389/fmicb.2023.1194435. eCollection 2023.
3
Defining the enzymatic pathway for polymorphic -glycosylation of the pneumococcal serine-rich repeat protein PsrP.
J Biol Chem. 2017 Apr 14;292(15):6213-6224. doi: 10.1074/jbc.M116.770446. Epub 2017 Feb 28.
4
Cardiomyopathy as presenting sign of glycogenin-1 deficiency-report of three cases and review of the literature.
J Inherit Metab Dis. 2017 Jan;40(1):139-149. doi: 10.1007/s10545-016-9978-1. Epub 2016 Oct 7.
5
In vitro assembly of the outer core of the lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium.
Biochemistry. 2014 Mar 4;53(8):1250-62. doi: 10.1021/bi4015665. Epub 2014 Feb 21.
6
Natural-product sugar biosynthesis and enzymatic glycodiversification.
Angew Chem Int Ed Engl. 2008;47(51):9814-59. doi: 10.1002/anie.200801204.
7
Identification of a novel group of putative Arabidopsis thaliana beta-(1,3)-galactosyltransferases.
Plant Mol Biol. 2008 Sep;68(1-2):43-59. doi: 10.1007/s11103-008-9351-3. Epub 2008 Jun 12.
8

本文引用的文献

2
3
Bacterial polysaccharide synthesis and gene nomenclature.
Trends Microbiol. 1996 Dec;4(12):495-503. doi: 10.1016/s0966-842x(97)82912-5.
4
A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze.
J Biol Chem. 1996 Nov 8;271(45):28581-92. doi: 10.1074/jbc.271.45.28581.
8
Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action.
J Bacteriol. 1995 Mar;177(6):1419-24. doi: 10.1128/jb.177.6.1419-1424.1995.
10
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd.
Science. 1995 Jul 28;269(5223):496-512. doi: 10.1126/science.7542800.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验