Emir B, Wieand S, Su J Q, Cha S
Department of Statistics, Iowa State University, Ames 50011, USA.
Stat Med. 1998 Nov 30;17(22):2563-78. doi: 10.1002/(sici)1097-0258(19981130)17:22<2563::aid-sim952>3.0.co;2-o.
We consider methods for evaluating repeated markers to be used as a substitute for a clinical examination or to predict an outcome, in our case progression of breast cancer. We propose a definition of specificity and sensitivity for this setting and describe non-parametric estimators for these parameters. We then derive the theory required to obtain confidence intervals for the specificity and sensitivity of a marker and to define an asymptotically normal statistic for comparing the sensitivities of two markers at a fixed specificity. The theory allows for correlations introduced by the fact that markers may be obtained from the same patient at multiple visits and that both markers being compared may be obtained from the same patient. The work allows for an approach that complements the frequently used time dependent Cox model, which we believe, will facilitate clinical interpretation of marker data.
我们考虑评估重复标记物的方法,这些标记物可用于替代临床检查或预测结果,在我们的案例中即乳腺癌的进展。我们为此设定提出了特异性和敏感性的定义,并描述了这些参数的非参数估计量。然后,我们推导出获得标记物特异性和敏感性置信区间以及定义用于在固定特异性下比较两个标记物敏感性的渐近正态统计量所需的理论。该理论考虑到了由于标记物可能在多次就诊时从同一患者获取以及被比较的两个标记物可能都从同一患者获取而引入的相关性。这项工作提供了一种补充常用的时间依赖性Cox模型的方法,我们认为这将有助于对标记物数据进行临床解读。