Suppr超能文献

出院后手术部位感染的高效识别:利用自动药房配药信息、管理数据和病历信息。

Efficient identification of postdischarge surgical site infections: use of automated pharmacy dispensing information, administrative data, and medical record information.

作者信息

Sands K, Vineyard G, Livingston J, Christiansen C, Platt R

机构信息

Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.

出版信息

J Infect Dis. 1999 Feb;179(2):434-41. doi: 10.1086/314586.

Abstract

Although most surgical site infections (SSIs) occur after hospital discharge, there is no efficient way to identify them. The utility of automated claims and electronic medical record data for this purpose was assessed in a cohort of 4086 nonobstetric procedures following which 96 postdischarge SSIs occurred. Coded diagnoses, tests, and treatments were assessed by use of recursive partitioning, with 10-fold cross-validation, and logistic regression with bootstrap resampling. Specific codes and combinations of codes identified a subset of 2% of all procedures among which 74% of SSIs had occurred. Accepting a specificity of 92% improved the sensitivity from 74% to 92%. Use of only hospital discharge diagnosis codes plus pharmacy dispensing data had sensitivity of 77% and specificity of 94%. All of these performance characteristics were better than questionnaire responses from patients or surgeons. Thus, information routinely collected by health care systems can be the basis of an efficient, largely passive, surveillance system for postdischarge SSIs.

摘要

尽管大多数手术部位感染(SSI)发生在出院后,但目前尚无有效的方法来识别这些感染。在4086例非产科手术队列中,评估了自动理赔和电子病历数据在此方面的效用,术后有96例发生了出院后SSI。通过递归划分、10倍交叉验证以及自助重采样的逻辑回归来评估编码诊断、检查和治疗。特定代码及代码组合识别出了占所有手术2%的一个子集,其中74%的SSI发生于此。若接受92%的特异性,则灵敏度从74%提高到92%。仅使用出院诊断代码加药房配药数据的灵敏度为77%,特异性为94%。所有这些性能特征均优于患者或外科医生的问卷调查回复。因此,医疗保健系统常规收集的信息可成为出院后SSI高效、基本被动的监测系统的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验