Suppr超能文献

大肠杆菌中热诱导的σ32合成:rpoH mRNA二级结构的结构与功能剖析

Heat-induced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure.

作者信息

Morita M, Kanemori M, Yanagi H, Yura T

机构信息

HSP Research Institute, Kyoto Research Park, Kyoto 600-8813, Japan.

出版信息

J Bacteriol. 1999 Jan;181(2):401-10. doi: 10.1128/JB.181.2.401-410.1999.

Abstract

The heat shock response in Escherichia coli depends primarily on the increased synthesis and stabilization of otherwise scarce and unstable sigma32 (rpoH gene product), which is required for the transcription of heat shock genes. The heat-induced synthesis of sigma32 occurs at the level of translation, and genetic evidence has suggested the involvement of a secondary structure at the 5' portion (nucleotides -19 to +247) of rpoH mRNA in regulation. We now present evidence for the mRNA secondary structure model by means of structure probing of RNA with chemical and enzymatic probes. A similar analysis of several mutant RNAs with a mutation predicted to alter a base pairing or with two compensatory mutations revealed altered secondary structures consistent with the expression and heat inducibility of the corresponding fusion constructs observed in vivo. These findings led us to assess the possible roles of each of the stem-loop structures by analyzing an additional set of deletions and base substitutions. The results indicated not only the primary importance of base pairings between the translation initiation region of ca. 20 nucleotides (the AUG initiation codon plus the "downstream box") and the internal region of rpoH mRNA but also the requirement of appropriate stability of mRNA secondary structures for characteristic thermoregulation, i.e., repression at a low temperature and induction upon a temperature upshift.

摘要

大肠杆菌中的热休克反应主要依赖于原本稀少且不稳定的σ32(rpoH基因产物)的合成增加和稳定性增强,而σ32是热休克基因转录所必需的。热诱导的σ32合成发生在翻译水平,并且遗传学证据表明rpoH mRNA 5'部分(核苷酸-19至+247)的二级结构参与了调控。我们现在通过用化学和酶促探针探测RNA的结构,为mRNA二级结构模型提供了证据。对几个突变RNA进行类似分析,这些突变RNA带有预测会改变碱基配对的突变或两个补偿性突变,结果显示二级结构发生了改变,这与在体内观察到的相应融合构建体的表达和热诱导性一致。这些发现促使我们通过分析另一组缺失和碱基替换来评估每个茎环结构的可能作用。结果不仅表明约20个核苷酸的翻译起始区域(AUG起始密码子加上“下游框”)与rpoH mRNA内部区域之间碱基配对的首要重要性,还表明mRNA二级结构具有适当稳定性对于特征性温度调节的必要性,即在低温下抑制和温度升高时诱导。

相似文献

6
Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
Proc Natl Acad Sci U S A. 2000 May 23;97(11):5860-5. doi: 10.1073/pnas.080495197.
8
Heat shock regulatory gene rpoH mRNA level increases after heat shock in Escherichia coli.
J Bacteriol. 1986 Dec;168(3):1155-8. doi: 10.1128/jb.168.3.1155-1158.1986.
9
The rpoH gene encoding heat shock sigma factor sigma32 of psychrophilic bacterium Colwellia maris.
Extremophiles. 2006 Apr;10(2):149-58. doi: 10.1007/s00792-005-0485-9. Epub 2005 Dec 17.
10
Regulation of a heat shock sigma32 homolog in Caulobacter crescentus.
J Bacteriol. 1996 Apr;178(7):1919-27. doi: 10.1128/jb.178.7.1919-1927.1996.

引用本文的文献

1
Revival of the heat shock response after two decades with a small Hsp in a critical but distinct act.
Biol Chem. 2025 Jan 7;406(1-2):29-33. doi: 10.1515/hsz-2024-0140. Print 2025 Jan 29.
2
Response and adaptation of the transcriptional heat shock response to pressure.
Front Microbiol. 2024 Nov 18;15:1470617. doi: 10.3389/fmicb.2024.1470617. eCollection 2024.
3
small heat shock protein IbpA plays a role in regulating the heat shock response by controlling the translation of σ.
Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2304841120. doi: 10.1073/pnas.2304841120. Epub 2023 Jul 31.
4
Temperature Matters: Bacterial Response to Temperature Change.
J Microbiol. 2023 Mar;61(3):343-357. doi: 10.1007/s12275-023-00031-x. Epub 2023 Apr 3.
5
Lessons Learned from Two Decades of Modeling the Heat-Shock Response.
Biomolecules. 2022 Nov 7;12(11):1645. doi: 10.3390/biom12111645.
6
RNase III Participates in the Adaptation to Temperature Shock and Oxidative Stress in .
Microorganisms. 2022 Mar 24;10(4):699. doi: 10.3390/microorganisms10040699.
7
Towards the Idea of Molecular Brains.
Int J Mol Sci. 2021 Nov 1;22(21):11868. doi: 10.3390/ijms222111868.
8
Regulatory roles of 5' UTR and ORF-internal RNAs detected by 3' end mapping.
Elife. 2021 Jan 18;10:e62438. doi: 10.7554/eLife.62438.
10
Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis.
Noncoding RNA Res. 2018 Apr 12;3(2):54-63. doi: 10.1016/j.ncrna.2018.04.003. eCollection 2018 Jun.

本文引用的文献

2
Regulation and conservation of the heat-shock transcription factor sigma32.
Genes Cells. 1996 Mar;1(3):277-84. doi: 10.1046/j.1365-2443.1996.28028.x.
8
Regulation of the Escherichia coli heat-shock response.
Mol Microbiol. 1993 Aug;9(4):671-80. doi: 10.1111/j.1365-2958.1993.tb01727.x.
10
Regulation of the heat-shock response in bacteria.
Annu Rev Microbiol. 1993;47:321-50. doi: 10.1146/annurev.mi.47.100193.001541.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验