Miyata H, Nishiyama S, Akashi K, Kinosita K
Department of Physics, Faculty of Science and Technology, Keio University. 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2048-53. doi: 10.1073/pnas.96.5.2048.
Development of protrusions in the cell is indispensable in the process of cell motility. Membrane protrusion has long been suggested to occur as a result of actin polymerization immediately beneath the cell membrane at the leading edge, but elucidation of the mechanism is insufficient because of the complexity of the cell. To study the mechanism, we prepared giant liposomes containing monomeric actin (100 or 200 microM) and introduced KCl into individual liposomes by an electroporation technique. On the electroporation, the giant liposomes deformed. Most importantly, protrusive structure grew from the liposomes containing 200 microM actin at rates (ranging from 0.3 to 0.7 micrometer/s) similar to those obtained in the cell. The deformation occurred in a time range (30 approximately 100 s) similar to that of actin polymerization monitored in a cuvette (ca. 50 s). Concomitant with deformation, Brownian motion of micron-sized particles entrapped in the liposomes almost ceased. From these observations, we conclude that actin polymerization in the liposomes caused the protrusive formation.
细胞中突起的形成在细胞运动过程中是不可或缺的。长期以来,人们一直认为膜突起是由前缘细胞膜正下方的肌动蛋白聚合作用导致的,但由于细胞的复杂性,对其机制的阐释还不充分。为了研究该机制,我们制备了含有单体肌动蛋白(100或200微摩尔)的巨型脂质体,并通过电穿孔技术将氯化钾引入单个脂质体中。在电穿孔过程中,巨型脂质体发生变形。最重要的是,含有200微摩尔肌动蛋白的脂质体上长出了突起结构,其生长速率(范围为0.3至0.7微米/秒)与在细胞中观察到的速率相似。变形发生的时间范围(约30至100秒)与在比色皿中监测到的肌动蛋白聚合时间范围(约50秒)相似。伴随着变形,包裹在脂质体中的微米级颗粒的布朗运动几乎停止。基于这些观察结果,我们得出结论,脂质体中的肌动蛋白聚合导致了突起的形成。