González-Alonso J, Teller C, Andersen S L, Jensen F B, Hyldig T, Nielsen B
Human Physiology Department, August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
J Appl Physiol (1985). 1999 Mar;86(3):1032-9. doi: 10.1152/jappl.1999.86.3.1032.
We investigated whether fatigue during prolonged exercise in uncompensable hot environments occurred at the same critical level of hyperthermia when the initial value and the rate of increase in body temperature are altered. To examine the effect of initial body temperature [esophageal temperature (Tes) = 35.9 +/- 0.2, 37.4 +/- 0. 1, or 38.2 +/- 0.1 (SE) degrees C induced by 30 min of water immersion], seven cyclists (maximal O2 uptake = 5.1 +/- 0.1 l/min) performed three randomly assigned bouts of cycle ergometer exercise (60% maximal O2 uptake) in the heat (40 degrees C) until volitional exhaustion. To determine the influence of rate of heat storage (0.10 vs. 0.05 degrees C/min induced by a water-perfused jacket), four cyclists performed two additional exercise bouts, starting with Tes of 37.0 degrees C. Despite different initial temperatures, all subjects fatigued at an identical level of hyperthermia (Tes = 40. 1-40.2 degrees C, muscle temperature = 40.7-40.9 degrees C, skin temperature = 37.0-37.2 degrees C) and cardiovascular strain (heart rate = 196-198 beats/min, cardiac output = 19.9-20.8 l/min). Time to exhaustion was inversely related to the initial body temperature: 63 +/- 3, 46 +/- 3, and 28 +/- 2 min with initial Tes of approximately 36, 37, and 38 degrees C, respectively (all P < 0.05). Similarly, with different rates of heat storage, all subjects reached exhaustion at similar Tes and muscle temperature (40.1-40.3 and 40. 7-40.9 degrees C, respectively), but with significantly different skin temperature (38.4 +/- 0.4 vs. 35.6 +/- 0.2 degrees C during high vs. low rate of heat storage, respectively, P < 0.05). Time to exhaustion was significantly shorter at the high than at the lower rate of heat storage (31 +/- 4 vs. 56 +/- 11 min, respectively, P < 0.05). Increases in heart rate and reductions in stroke volume paralleled the rise in core temperature (36-40 degrees C), with skin blood flow plateauing at Tes of approximately 38 degrees C. These results demonstrate that high internal body temperature per se causes fatigue in trained subjects during prolonged exercise in uncompensable hot environments. Furthermore, time to exhaustion in hot environments is inversely related to the initial temperature and directly related to the rate of heat storage.
我们研究了在无法代偿的炎热环境中进行长时间运动时,当初始体温和体温上升速率发生变化时,疲劳是否会在相同的热应激临界水平出现。为了研究初始体温的影响(通过30分钟的水浸使食管温度(Tes)分别为35.9±0.2、37.4±0.1或38.2±0.1(标准误)℃),七名自行车运动员(最大摄氧量=5.1±0.1升/分钟)在40℃的高温环境下,随机进行了三轮自行车测力计运动(最大摄氧量的60%),直至自愿疲劳。为了确定热量储存速率的影响(通过水灌注夹克使体温上升速率分别为0.10℃/分钟和0.05℃/分钟),四名自行车运动员从37.0℃的Tes开始,又进行了两轮运动。尽管初始温度不同,但所有受试者在相同的热应激水平(Tes=40.1-40.2℃,肌肉温度=40.7-40.9℃,皮肤温度=37.0-37.2℃)和心血管应激(心率=196-198次/分钟,心输出量=19.9-20.8升/分钟)时出现疲劳。疲劳时间与初始体温呈负相关:初始Tes约为36、37和38℃时,疲劳时间分别为63±3、46±3和28±2分钟(所有P<0.05)。同样,在不同的热量储存速率下,所有受试者在相似的Tes和肌肉温度(分别为40.1-40.3℃和40.7-40.9℃)时达到疲劳,但皮肤温度有显著差异(热量储存速率高时为38.4±0.4℃,热量储存速率低时为35.6±0.2℃,P<0.05)。热量储存速率高时的疲劳时间显著短于低时(分别为31±4分钟和56±11分钟,P<0.05)。心率增加和每搏输出量减少与核心体温升高(36-40℃)平行,皮肤血流量在Tes约为38℃时趋于平稳。这些结果表明,在无法代偿的炎热环境中进行长时间运动时,较高的体内温度本身会导致训练有素的受试者疲劳。此外,炎热环境中的疲劳时间与初始温度呈负相关,与热量储存速率呈正相关。