Parales R E, Parales J V, Gibson D T
Department of Microbiology and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, Iowa 52242, USA.
J Bacteriol. 1999 Mar;181(6):1831-7. doi: 10.1128/JB.181.6.1831-1837.1999.
The naphthalene dioxygenase enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The crystal structure of naphthalene dioxygenase (B. Kauppi, K. Lee, E. Carredano, R. E. Parales, D. T. Gibson, H. Eklund, and S. Ramaswamy, Structure 6:571-586, 1998) indicates that aspartate 205 may provide the most direct route of electron transfer between the Rieske [2Fe-2S] center of one alpha subunit and mononuclear iron in the adjacent alpha subunit. In this study, we constructed four site-directed mutations that changed aspartate 205 to alanine, glutamate, asparagine, or glutamine to test whether this residue is essential for naphthalene dioxygenase activity. The mutant proteins were very inefficient in oxidizing naphthalene to cis-naphthalene dihydrodiol, and oxygen uptake in the presence of naphthalene was below detectable levels. The purified mutant protein with glutamine in place of aspartate 205 had identical spectral properties to wild-type naphthalene dioxygenase and was reduced by NADH in the presence of catalytic amounts of ferredoxinNAP and reductaseNAP. Benzene, an effective uncoupler of oxygen consumption in purified naphthalene dioxygenase, did not elicit oxygen uptake by the mutant protein. These results indicate that electron transfer from NADH to the Rieske center in the mutant oxygenase is intact, a finding consistent with the proposal that aspartate 205 is a necessary residue in the major pathway of electron transfer to mononuclear iron at the active site.
萘双加氧酶系统在恶臭假单胞菌NCIB 9816 - 4对萘的需氧降解过程中执行第一步反应。萘双加氧酶的晶体结构(B. Kauppi、K. Lee、E. Carredano、R. E. Parales、D. T. Gibson、H. Eklund和S. Ramaswamy,《结构》6:571 - 586,1998年)表明,天冬氨酸205可能提供了一条最直接的电子转移途径,该途径存在于一个α亚基的 Rieske [2Fe - 2S] 中心与相邻α亚基中的单核铁之间。在本研究中,我们构建了四个定点突变,将天冬氨酸205分别突变为丙氨酸、谷氨酸、天冬酰胺或谷氨酰胺,以测试该残基对于萘双加氧酶活性是否必不可少。突变蛋白在将萘氧化为顺式萘二氢二醇方面效率极低,并且在有萘存在的情况下,氧气摄取量低于可检测水平。用谷氨酰胺取代天冬氨酸205的纯化突变蛋白具有与野生型萘双加氧酶相同的光谱特性,并且在催化量的铁氧还蛋白NAP和还原酶NAP存在的情况下能被NADH还原。苯是纯化的萘双加氧酶中一种有效的氧消耗解偶联剂,但它不会引发突变蛋白的氧气摄取。这些结果表明,在突变加氧酶中从NADH到Rieske中心的电子转移是完整的,这一发现与天冬氨酸205是向活性位点的单核铁进行电子转移的主要途径中的一个必需残基这一观点一致。