Suppr超能文献

Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter, and solar irradiance.

作者信息

Fernandez FG, Camacho FG, Perez JA, Sevilla JM, Grima EM

机构信息

Department of Chemical Engineering, University of Almeria, E-04071 Almeria, Spain.

出版信息

Biotechnol Bioeng. 1998 Jun 20;58(6):605-16. doi: 10.1002/(sici)1097-0290(19980620)58:6<605::aid-bit6>3.0.co;2-m.

Abstract

A macromodel is developed for estimating the year-long biomass productivity of outdoor cultures of microalga in tubular photobioreactors. The model evaluates the solar irradiance on the culture surface as a function of day of the year and the geographic location. In a second step, the geometry of the system is taken into account in estimating the average irradiance to which the cells are exposed. Finally, the growth rate is estimated as a function of irradiance, taking into account photoinhibition and photolimitation. The model interconnects solar irradiance (an environmental variable), tube diameter (a design variable), and dilution rate (an operating variable). Continuous cultures in two different tubular photobioreactors were analyzed using the macromodel. The biomass productivity ranged from 0.50 to 2.04 g L-1 d-1, and from 1.08 to 2. 76 g L-1 d-1, for the larger and the smaller tube diameter photobioreactors, respectively. The quantum yield ranged from 1.1 to 2.2 g E-1; the higher the incident solar radiation, the lower the quantum yield. Simultaneous photolimitation and photoinhibition of outdoor cultures was observed. The model reproduced the experimental results with less than 20% error. If photoinhibition was neglected, and a growth model that considered only photolimitation was used to fit the data, the error increased to 45%, thus reflecting the inadequacy of previous outdoor growth models that disregard photoinhibition. Copyright 1998 John Wiley & Sons, Inc.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验