Suppr超能文献

CcpA在枯草芽孢杆菌碳分解代谢中心途径调控中的作用。

Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis.

作者信息

Tobisch S, Zühlke D, Bernhardt J, Stülke J, Hecker M

机构信息

Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany.

出版信息

J Bacteriol. 1999 Nov;181(22):6996-7004. doi: 10.1128/JB.181.22.6996-7004.1999.

Abstract

The Bacillus subtilis two-dimensional (2D) protein index contains almost all glycolytic and tricarboxylic acid (TCA) cycle enzymes, among them the most abundant housekeeping proteins of growing cells. Therefore, a comprehensive study on the regulation of glycolysis and the TCA cycle was initiated. Whereas expression of genes encoding the upper and lower parts of glycolysis (pgi, pfk, fbaA, and pykA) is not affected by the glucose supply, there is an activation of the glycolytic gap gene and the pgk operon by glucose. This activation seems to be dependent on the global regulator CcpA, as shown by 2D polyacrylamide gel electrophoresis analysis as well as by transcriptional analysis. Furthermore, a high glucose concentration stimulates production and excretion of organic acids (overflow metabolism) in the wild type but not in the ccpA mutant. Finally, CcpA is involved in strong glucose repression of almost all TCA cycle genes. In addition to TCA cycle and glycolytic enzymes, the levels of many other proteins are affected by the ccpA mutation. Our data suggest (i) that ccpA mutants are unable to activate glycolysis or carbon overflow metabolism and (ii) that CcpA might be a key regulator molecule, controlling a superregulon of glucose catabolism.

摘要

枯草芽孢杆菌二维(2D)蛋白质索引包含几乎所有糖酵解和三羧酸(TCA)循环酶,其中包括生长细胞中最丰富的管家蛋白。因此,启动了一项关于糖酵解和TCA循环调控的全面研究。虽然编码糖酵解上下游部分(pgi、pfk、fbaA和pykA)的基因表达不受葡萄糖供应的影响,但糖酵解间隙基因和pgk操纵子会被葡萄糖激活。如二维聚丙烯酰胺凝胶电泳分析以及转录分析所示,这种激活似乎依赖于全局调节因子CcpA。此外,高葡萄糖浓度会刺激野生型中有机酸的产生和分泌(溢流代谢),但在ccpA突变体中则不会。最后,CcpA参与了几乎所有TCA循环基因的强烈葡萄糖抑制作用。除了TCA循环和糖酵解酶外,许多其他蛋白质的水平也受到ccpA突变的影响。我们的数据表明:(i)ccpA突变体无法激活糖酵解或碳溢流代谢;(ii)CcpA可能是一个关键的调节分子,控制着葡萄糖分解代谢的一个超级调控子。

相似文献

1
Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis.
J Bacteriol. 1999 Nov;181(22):6996-7004. doi: 10.1128/JB.181.22.6996-7004.1999.
2
Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis.
J Mol Microbiol Biotechnol. 2005;10(1):40-50. doi: 10.1159/000090347.
3
Carbon catabolite control of the metabolic network in Bacillus subtilis.
Biosci Biotechnol Biochem. 2009 Feb;73(2):245-59. doi: 10.1271/bbb.80479. Epub 2009 Feb 7.
4
Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis.
J Bacteriol. 2000 Oct;182(19):5611-4. doi: 10.1128/JB.182.19.5611-5614.2000.

引用本文的文献

1
CcpA-mediated regulation of cellular energy metabolism in the ruminal bacterium .
Microbiol Spectr. 2025 Aug 5;13(8):e0215024. doi: 10.1128/spectrum.02150-24. Epub 2025 Jun 25.
2
Development of a xylose-inducible and glucose-insensitive expression system for Parageobacillus thermoglucosidasius.
Appl Microbiol Biotechnol. 2024 Oct 23;108(1):493. doi: 10.1007/s00253-024-13333-w.
3
A New Mechanism of Carbon Metabolism and Acetic Acid Balance Regulated by CcpA.
Microorganisms. 2023 Sep 13;11(9):2303. doi: 10.3390/microorganisms11092303.
4
Bacillus subtilis, a Swiss Army Knife in Science and Biotechnology.
J Bacteriol. 2023 May 25;205(5):e0010223. doi: 10.1128/jb.00102-23. Epub 2023 May 4.
5
Functional and structural diversification of incomplete phosphotransferase system in cellulose-degrading clostridia.
ISME J. 2023 Jun;17(6):823-835. doi: 10.1038/s41396-023-01392-2. Epub 2023 Mar 10.
6
Interplay of CodY and CcpA in Regulating Central Metabolism and Biofilm Formation in Staphylococcus aureus.
J Bacteriol. 2022 Jul 19;204(7):e0061721. doi: 10.1128/jb.00617-21. Epub 2022 Jun 23.
7
Glutamate Dehydrogenase (GdhA) of Streptococcus pneumoniae Is Required for High Temperature Adaptation.
Infect Immun. 2021 Nov 16;89(12):e0040021. doi: 10.1128/IAI.00400-21. Epub 2021 Sep 7.
8
10
Inactivation of the Pta-AckA pathway impairs fitness of during overflow metabolism.
J Bacteriol. 2021 May 1;203(9). doi: 10.1128/JB.00660-20. Epub 2021 Feb 16.

本文引用的文献

1
Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT.
Mol Microbiol. 1997 Jul;25(1):65-78. doi: 10.1046/j.1365-2958.1997.4351797.x.
3
Interplay of global regulators and cell physiology in the general stress response of Escherichia coli.
Curr Opin Microbiol. 1999 Apr;2(2):148-52. doi: 10.1016/S1369-5274(99)80026-5.
4
Carbon catabolite repression in bacteria.
Curr Opin Microbiol. 1999 Apr;2(2):195-201. doi: 10.1016/S1369-5274(99)80034-4.
6
The yvyD gene of Bacillus subtilis is under dual control of sigmaB and sigmaH.
J Bacteriol. 1998 Dec;180(24):6674-80. doi: 10.1128/JB.180.24.6674-6680.1998.
8
Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter.
J Bacteriol. 1998 Nov;180(22):5961-7. doi: 10.1128/JB.180.22.5961-5967.1998.
10
NADP, corepressor for the Bacillus catabolite control protein CcpA.
Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9590-5. doi: 10.1073/pnas.95.16.9590.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验