Suppr超能文献

海胆体腔细胞中基于肌动蛋白的逆向流动的两个组成部分。

Two components of actin-based retrograde flow in sea urchin coelomocytes.

作者信息

Henson J H, Svitkina T M, Burns A R, Hughes H E, MacPartland K J, Nazarian R, Borisy G G

机构信息

Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.

出版信息

Mol Biol Cell. 1999 Dec;10(12):4075-90. doi: 10.1091/mbc.10.12.4075.

Abstract

Sea urchin coelomocytes represent an excellent experimental model system for studying retrograde flow. Their extreme flatness allows for excellent microscopic visualization. Their discoid shape provides a radially symmetric geometry, which simplifies analysis of the flow pattern. Finally, the nonmotile nature of the cells allows for the retrograde flow to be analyzed in the absence of cell translocation. In this study we have begun an analysis of the retrograde flow mechanism by characterizing its kinetic and structural properties. The supramolecular organization of actin and myosin II was investigated using light and electron microscopic methods. Light microscopic immunolocalization was performed with anti-actin and anti-sea urchin egg myosin II antibodies, whereas transmission electron microscopy was performed on platinum replicas of critical point-dried and rotary-shadowed cytoskeletons. Coelomocytes contain a dense cortical actin network, which feeds into an extensive array of radial bundles in the interior. These actin bundles terminate in a perinuclear region, which contains a ring of myosin II bipolar minifilaments. Retrograde flow was arrested either by interfering with actin polymerization or by inhibiting myosin II function, but the pathway by which the flow was blocked was different for the two kinds of inhibitory treatments. Inhibition of actin polymerization with cytochalasin D caused the actin cytoskeleton to separate from the cell margin and undergo a finite retrograde retraction. In contrast, inhibition of myosin II function either with the wide-spectrum protein kinase inhibitor staurosporine or the myosin light chain kinase-specific inhibitor KT5926 stopped flow in the cell center, whereas normal retrograde flow continued at the cell periphery. These differential results suggest that the mechanism of retrograde flow has two, spatially segregated components. We propose a "push-pull" mechanism in which actin polymerization drives flow at the cell periphery, whereas myosin II provides the tension on the actin cytoskeleton necessary for flow in the cell interior.

摘要

海胆体腔细胞是研究逆行流动的绝佳实验模型系统。它们极其扁平,便于进行出色的显微镜观察。它们的盘状形状提供了径向对称的几何结构,简化了流动模式的分析。最后,细胞的非运动性质使得可以在没有细胞移位的情况下分析逆行流动。在本研究中,我们通过表征其动力学和结构特性,开始对逆行流动机制进行分析。使用光学和电子显微镜方法研究了肌动蛋白和肌球蛋白II的超分子组织。用抗肌动蛋白和抗海胆卵肌球蛋白II抗体进行光学显微镜免疫定位,而透射电子显微镜则对临界点干燥和旋转阴影细胞骨架的铂复制品进行观察。体腔细胞含有密集的皮质肌动蛋白网络,该网络延伸到内部大量的径向束中。这些肌动蛋白束在核周区域终止,该区域包含一圈肌球蛋白II双极微丝。通过干扰肌动蛋白聚合或抑制肌球蛋白II功能可阻止逆行流动,但两种抑制处理阻止流动的途径不同。用细胞松弛素D抑制肌动蛋白聚合会导致肌动蛋白细胞骨架与细胞边缘分离并经历有限的逆行收缩。相比之下,用广谱蛋白激酶抑制剂星形孢菌素或肌球蛋白轻链激酶特异性抑制剂KT5926抑制肌球蛋白II功能会使细胞中心的流动停止,而细胞周边的正常逆行流动仍在继续。这些不同的结果表明,逆行流动机制有两个在空间上分离的成分。我们提出一种“推-拉”机制,其中肌动蛋白聚合在细胞周边驱动流动,而肌球蛋白II则为细胞内部流动所需的肌动蛋白细胞骨架提供张力。

相似文献

1
Two components of actin-based retrograde flow in sea urchin coelomocytes.
Mol Biol Cell. 1999 Dec;10(12):4075-90. doi: 10.1091/mbc.10.12.4075.
3
Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II.
J Cell Sci. 2000 Feb;113 ( Pt 3):471-82. doi: 10.1242/jcs.113.3.471.
5
Structure and dynamics of an Arp2/3 complex-independent component of the lamellipodial actin network.
Cell Motil Cytoskeleton. 2009 Sep;66(9):679-92. doi: 10.1002/cm.20398.
7
Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii.
Mol Microbiol. 1997 Oct;26(1):163-73. doi: 10.1046/j.1365-2958.1997.5671913.x.
9
Regulatory light chain phosphorylation and the assembly of myosin II into the cytoskeleton of microcapillary endothelial cells.
Cell Motil Cytoskeleton. 1999;43(3):255-68. doi: 10.1002/(SICI)1097-0169(1999)43:3<255::AID-CM8>3.0.CO;2-T.

引用本文的文献

3
Recombinant SpTransformer proteins are functionally diverse for binding and phagocytosis by three subtypes of sea urchin phagocytes.
Front Immunol. 2024 Apr 29;15:1372904. doi: 10.3389/fimmu.2024.1372904. eCollection 2024.
4
Coelomocyte populations in the sea urchin, , undergo dynamic changes in response to immune challenge.
Front Immunol. 2022 Aug 31;13:940852. doi: 10.3389/fimmu.2022.940852. eCollection 2022.
5
Blebs-Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration.
Front Cell Dev Biol. 2022 Jul 15;10:926394. doi: 10.3389/fcell.2022.926394. eCollection 2022.
6
Lipofection mediated transfection fails for sea urchin coelomocytes.
PLoS One. 2022 May 6;17(5):e0267911. doi: 10.1371/journal.pone.0267911. eCollection 2022.
8
Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling.
Biophys J. 2022 Jan 4;121(1):102-118. doi: 10.1016/j.bpj.2021.11.2889. Epub 2021 Dec 1.
10
Discrete mechanical model of lamellipodial actin network implements molecular clutch mechanism and generates arcs and microspikes.
PLoS Comput Biol. 2021 Oct 18;17(10):e1009506. doi: 10.1371/journal.pcbi.1009506. eCollection 2021 Oct.

本文引用的文献

3
Myosin II-independent F-actin flow contributes to cell locomotion in dictyostelium.
J Cell Sci. 1999 Mar;112 ( Pt 6):877-86. doi: 10.1242/jcs.112.6.877.
5
Isolation and contraction of the stress fiber.
Mol Biol Cell. 1998 Jul;9(7):1919-38. doi: 10.1091/mbc.9.7.1919.
8
Cell crawling: first the motor, now the transmission.
J Cell Biol. 1998 Apr 6;141(1):1-4. doi: 10.1083/jcb.141.1.1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验