Suppr超能文献

中链脂肪酸影响丝状真菌红曲霉菌中桔霉素的产生。

Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber.

作者信息

Hajjaj H, Klaébé A, Goma G, Blanc P J, Barbier E, François J

机构信息

Centre de Bioingénierie Gilbert Durand UMR-CNRS 5504, UR-INRA 792, Institut National des Sciences Appliquées de Toulouse, Complexe Scientifique de Rangueil, 31077 Toulouse, France.

出版信息

Appl Environ Microbiol. 2000 Mar;66(3):1120-5. doi: 10.1128/AEM.66.3.1120-1125.2000.

Abstract

During submerged culture in the presence of glucose and glutamate, the filamentous fungus Monascus ruber produces water-soluble red pigments together with citrinin, a mycotoxin with nephrotoxic and hepatoxic effects on animals. Analysis of the (13)C-pigment molecules from mycelia cultivated with [1-(13)C]-, [2-(13)C]-, or [1, 2-(13)C]acetate by (13)C nuclear magnetic resonance indicated that the biosynthesis of the red pigments used both the polyketide pathway, to generate the chromophore structure, and the fatty acid synthesis pathway, to produce a medium-chain fatty acid (octanoic acid) which was then bound to the chromophore by a trans-esterification reaction. Hence, to enhance pigment production, we tried to short-circuit the de novo synthesis of medium-chain fatty acids by adding them to the culture broth. Of fatty acids with carbon chains ranging from 6 to 18 carbon atoms, only octanoic acid showed a 30 to 50% stimulation of red pigment production, by a mechanism which, in contrast to expectation, did not involve its direct trans-esterification on the chromophore backbone. However, the medium- and long-chain fatty acids tested were readily assimilated by the fungus, and in the case of fatty acids ranging from 8 to 12 carbon atoms, 30 to 40% of their initial amount transiently accumulated in the growth medium in the form of the corresponding methylketone 1 carbon unit shorter. Very interestingly, these fatty acids or their corresponding methylketones caused a strong reduction in, or even a complete inhibition of, citrinin production by M. ruber when they were added to the medium. Several data indicated that this effect could be due to the degradation of the newly synthesized citrinin (or an intermediate in the citrinin pathway) by hydrogen peroxide resulting from peroxisome proliferation induced by medium-chain fatty acids or methylketones.

摘要

在含有葡萄糖和谷氨酸的深层培养过程中,丝状真菌红曲霉会产生水溶性红色素以及桔霉素,桔霉素是一种对动物具有肾毒性和肝毒性的霉菌毒素。通过碳-13核磁共振对用[1-(13)C]-、[2-(13)C]-或[1,2-(13)C]乙酸培养的菌丝体中的碳-13色素分子进行分析表明,红色素的生物合成既利用聚酮途径生成发色团结构,又利用脂肪酸合成途径生成中链脂肪酸(辛酸),然后通过酯交换反应将其与发色团结合。因此,为了提高色素产量,我们尝试通过向培养液中添加中链脂肪酸来绕过其从头合成过程。在碳链长度为6至18个碳原子的脂肪酸中,只有辛酸能使红色素产量提高30%至50%,其作用机制与预期相反,并不涉及它直接在发色团主链上进行酯交换。然而,所测试的中链和长链脂肪酸很容易被真菌吸收,对于碳链长度为8至12个碳原子的脂肪酸,其初始量的30%至40%会以相应的短一个碳单位的甲基酮形式暂时积累在生长培养基中。非常有趣的是,当这些脂肪酸或其相应的甲基酮添加到培养基中时,它们会导致红曲霉产生桔霉素的量大幅减少,甚至完全抑制。多项数据表明,这种效应可能是由于中链脂肪酸或甲基酮诱导过氧化物酶体增殖产生的过氧化氢降解新合成的桔霉素(或桔霉素途径中的一种中间体)所致。

相似文献

1
Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber.
Appl Environ Microbiol. 2000 Mar;66(3):1120-5. doi: 10.1128/AEM.66.3.1120-1125.2000.
2
Effect of amino acids on red pigments and citrinin production in Monascus ruber.
J Food Sci. 2012 Mar;77(3):M156-9. doi: 10.1111/j.1750-3841.2011.02579.x.
3
Corncob hydrolysate, an efficient substrate for Monascus pigment production through submerged fermentation.
Biotechnol Appl Biochem. 2014 Nov-Dec;61(6):716-23. doi: 10.1002/bab.1225. Epub 2014 Jun 26.
4
Pigments and citrinin biosynthesis by fungi belonging to genus Monascus.
Z Naturforsch C J Biosci. 2005 Jan-Feb;60(1-2):116-20. doi: 10.1515/znc-2005-1-221.
5
Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation.
J Biosci Bioeng. 2015 May;119(5):564-9. doi: 10.1016/j.jbiosc.2014.10.014. Epub 2014 Dec 5.
6
Effects of Light Intensity and Color on the Biomass, Extracellular Red Pigment, and Citrinin Production of Monascus ruber.
J Agric Food Chem. 2016 Dec 21;64(50):9506-9514. doi: 10.1021/acs.jafc.6b04056. Epub 2016 Dec 8.
7
Identification of Mga1, a G-protein alpha-subunit gene involved in regulating citrinin and pigment production in Monascus ruber M7.
FEMS Microbiol Lett. 2010 Jul;308(2):108-14. doi: 10.1111/j.1574-6968.2010.01992.x. Epub 2010 Apr 16.
8
Effect of submerged and solid-state fermentation on pigment and citrinin production by Monascus purpureus.
Acta Biol Hung. 2013 Sep;64(3):385-94. doi: 10.1556/ABiol.64.2013.3.11.
9
Kinetic analysis of red pigment and citrinin production by Monascus ruber as a function of organic acid accumulation.
Enzyme Microb Technol. 2000 Nov 1;27(8):619-625. doi: 10.1016/s0141-0229(00)00260-x.
10
The ctnG gene encodes carbonic anhydrase involved in mycotoxin citrinin biosynthesis from Monascus aurantiacus.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(4):577-83. doi: 10.1080/19440049.2014.990993. Epub 2014 Dec 15.

引用本文的文献

1
: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry.
IMA Fungus. 2025 Mar 7;16:e142462. doi: 10.3897/imafungus.16.142462. eCollection 2025.
4
Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications.
J Fungi (Basel). 2023 Apr 7;9(4):454. doi: 10.3390/jof9040454.
5
Production of Fungal Pigments: Molecular Processes and Their Applications.
J Fungi (Basel). 2022 Dec 28;9(1):44. doi: 10.3390/jof9010044.
7
Characterization and inhibition of four fungi producing citrinin in various culture media.
Biotechnol Lett. 2021 Mar;43(3):701-710. doi: 10.1007/s10529-020-03061-2. Epub 2021 Jan 1.
8
Assimilation of Cholesterol by .
J Fungi (Basel). 2020 Dec 9;6(4):352. doi: 10.3390/jof6040352.
9
Fungal Pigments and Their Roles Associated with Human Health.
J Fungi (Basel). 2020 Nov 12;6(4):280. doi: 10.3390/jof6040280.

本文引用的文献

3
Biosynthetic pathway of citrinin in the filamentous fungus monascus ruber as revealed by 13C nuclear magnetic resonance.
Appl Environ Microbiol. 1999 Jan;65(1):311-4. doi: 10.1128/AEM.65.1.311-314.1999.
4
Characterization of Aspergillus nidulans peroxisomes by immunoelectron microscopy.
Arch Microbiol. 1998 Oct;170(5):370-6. doi: 10.1007/s002030050655.
5
Induction of beta-oxidation enzymes and microbody proliferation in Aspergillus nidulans.
Arch Microbiol. 1996 Nov;166(5):336-41. doi: 10.1007/s002030050392.
6
Characterization of monascidin A from Monascus as citrinin.
Int J Food Microbiol. 1995 Oct;27(2-3):201-13. doi: 10.1016/0168-1605(94)00167-5.
8
Peroxisomes of alkane-grown yeast: fundamental and practical aspects.
Ann N Y Acad Sci. 1982;386:183-99. doi: 10.1111/j.1749-6632.1982.tb21416.x.
9
Fatty acyl-coenzyme A oxidase activity and H2O2 production in Phanerochaete chrysosporium mycelia.
Biochem Biophys Res Commun. 1984 Jan 30;118(2):437-43. doi: 10.1016/0006-291x(84)91322-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验