Segré D, Ben-Eli D, Lancet D
Department of Molecular Genetics and the Crown Human Genome Center, The Weizmann Institute of Science, 76100 Rehovot, Israel.
Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4112-7. doi: 10.1073/pnas.97.8.4112.
Mutually catalytic sets of simple organic molecules have been suggested to be capable of self-replication and rudimentary chemical evolution. Previous models for the behavior of such sets have analyzed the global properties of short biopolymer ensembles by using graph theory and a mean field approach. In parallel, experimental studies with the autocatalytic formation of amphiphilic assemblies (e.g., lipid vesicles or micelles) demonstrated self-replication properties resembling those of living cells. Combining these approaches, we analyze here the kinetic behavior of small heterogeneous assemblies of spontaneously aggregating molecules, of the type that could form readily under prebiotic conditions. A statistical formalism for mutual rate enhancement is used to numerically simulate the detailed chemical kinetics within such assemblies. We demonstrate that a straightforward set of assumptions about kinetically enhanced recruitment of simple amphiphilic molecules, as well as about the spontaneous growth and splitting of assemblies, results in a complex population behavior. The assemblies manifest a significant degree of homeostasis, resembling the previously predicted quasi-stationary states of biopolymer ensembles (Dyson, F. J. (1982) J. Mol. Evol. 18, 344-350). Such emergent catalysis-driven, compositionally biased entities may be viewed as having rudimentary "compositional genomes." Our analysis addresses the question of how mutually catalytic metabolic networks, devoid of sequence-based biopolymers, could exhibit transfer of chemical information and might undergo selection and evolution. This computed behavior may constitute a demonstration of natural selection in populations of molecules without genetic apparatus, suggesting a pathway from random molecular assemblies to a minimal protocell.
有人提出,相互催化的简单有机分子集合能够进行自我复制和初步的化学进化。此前关于此类集合行为的模型通过使用图论和平均场方法分析了短生物聚合物集合的全局性质。与此同时,两亲性组装体(如脂质囊泡或胶束)自催化形成的实验研究表明,其具有类似于活细胞的自我复制特性。结合这些方法,我们在此分析了在益生元条件下易于形成的自发聚集分子的小型异质组装体的动力学行为。一种用于相互速率增强的统计形式被用于对这类组装体内的详细化学动力学进行数值模拟。我们证明,关于简单两亲性分子动力学增强招募以及组装体自发生长和分裂的一组直接假设,会导致复杂的群体行为。这些组装体表现出显著程度的稳态,类似于先前预测的生物聚合物集合的准稳态(戴森,F. J.(1982年)《分子进化杂志》18卷,344 - 350页)。这种由催化驱动、成分有偏差的新兴实体可被视为具有初步的“组成基因组”。我们的分析解决了一个问题,即没有基于序列的生物聚合物的相互催化代谢网络如何能够表现出化学信息传递,以及可能如何经历选择和进化。这种计算出的行为可能构成了在没有遗传机制的分子群体中自然选择的一个例证,暗示了一条从随机分子组装体到最小原始细胞的途径。