Nadler Boaz, Hollerbach Uwe, Eisenberg R S
Department of Mathematics, Yale University, New Haven, Connecticut 06520, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):021905. doi: 10.1103/PhysRevE.68.021905. Epub 2003 Aug 13.
In an electrostatic problem with nonuniform geometry, a charge Q in one region induces surface charges [called dielectric boundary charges (DBC)] at boundaries between different dielectrics. These induced surface charges, in return, exert a force [called dielectric boundary force (DBF)] on the charge Q that induced them. The DBF is often overlooked. It is not present in standard continuum theories of (point) ions in or near membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst- Planck. The DBF is important when a charge Q is near dielectric interfaces, for example, when ions permeate through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed charge force (FCF) produced by the permanent charge of the gramicidin polypeptide, and so the net force on the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and so the net (repulsive) force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged positive ions to move into and through the channel. The DBF is not directly responsible, however, for selectivity between the alkali metal ions (e.g., Li+, Na+, K+): we prove that the DBF on a mobile spherical ion is independent of the ion's radius.
在一个几何形状不均匀的静电问题中,一个区域内的电荷Q会在不同电介质之间的边界处感应出表面电荷(称为电介质边界电荷,DBC)。作为回报,这些感应表面电荷会对产生它们的电荷Q施加一个力(称为电介质边界力,DBF)。DBF常常被忽视。在关于膜和蛋白质内部或附近(点)离子的标准连续介质理论中,如古依 - 查普曼理论、德拜 - 休克尔理论、泊松 - 玻尔兹曼理论或泊松 - 能斯特 - 普朗克理论,它并不存在。当电荷Q靠近电介质界面时,DBF就很重要,例如当离子透过嵌入生物膜的蛋白质通道时。在本文中,我们定义了DBF,并针对平面电介质壁以及类似于离子通道短杆菌肽的隧道几何形状明确计算了它。一般来说,我们以一种对连续介质理论有用的形式来表述DBF,即作为一个带有边界条件的偏微分方程的解。DBF在离子透过短杆菌肽通道的过程中起着关键作用。通道中的正离子产生的DBF与短杆菌肽多肽永久电荷产生的固定电荷力(FCF)符号相反,因此作用在正离子上的净力减小。负离子产生的DBF与FCF符号相同,所以作用在负离子上的净(排斥)力增大。这样,正离子能够透过通道,而负离子则被排斥在外。在短杆菌肽中,正是FCF和DBF之间的这种平衡使得只有单电荷正离子能够进入并穿过通道。然而,DBF并非直接决定碱金属离子(例如Li⁺、Na⁺、K⁺)之间的选择性:我们证明了作用在移动球形离子上的DBF与离子半径无关。