Suppr超能文献

利用交叉验证和独立样本验证从玉米实验数据中确定的数量性状位点所解释的基因型方差估计比例的偏差和抽样误差。

Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples.

作者信息

Utz HF, Melchinger AE, Schön CC

机构信息

Institute of Plant Breeding, Seed Science and Population Genetics, 70593 Stuttgart, Germany.

出版信息

Genetics. 2000 Apr;154(3):1839-1849.

Abstract

Cross validation (CV) was used to analyze the effects of different environments and different genotypic samples on estimates of the proportion of genotypic variance explained by QTL (p). Testcrosses of 344 F(3) maize lines grown in four environments were evaluated for a number of agronomic traits. In each of 200 replicated CV runs, this data set was subdivided into an estimation set (ES) and various test sets (TS). ES were used to map QTL and estimate p for each run (p(ES)) and its median (p(ES)) across all runs. The bias of these estimates was assessed by comparison with the median (p(TS.ES)) obtained from TS. We also used two independent validation samples derived from the same cross for further comparison. The median p(ES) showed a large upward bias compared to p(TS.ES). Environmental sampling generally had a smaller effect on the bias of p(ES) than genotypic sampling or both factors simultaneously. In independent validation, p(TS.ES) was on average only 50% of p(ES). A wide range among p(ES) reflected a large sampling error of these estimates. QTL frequency distributions and comparison of estimated QTL effects indicated a low precision of QTL localization and an upward bias in the absolute values of estimated QTL effects from ES. CV with data from three QTL studies reported in the literature yielded similar results as those obtained with maize testcrosses. We therefore recommend CV for obtaining asymptotically unbiased estimates of p and consequently a realistic assessment of the prospects of MAS.

摘要

交叉验证(CV)用于分析不同环境和不同基因型样本对由QTL解释的基因型方差比例估计值(p)的影响。对在四种环境中种植的344个F(3)玉米品系的测交后代进行了多个农艺性状的评估。在200次重复的CV运行中,每个数据集都被细分为一个估计集(ES)和各种测试集(TS)。ES用于在每次运行中定位QTL并估计p(p(ES))及其在所有运行中的中位数(p(ES))。通过与从TS获得的中位数(p(TS.ES))进行比较来评估这些估计值的偏差。我们还使用了来自同一杂交组合的两个独立验证样本进行进一步比较。与p(TS.ES)相比,p(ES)的中位数显示出较大的向上偏差。与基因型抽样或两个因素同时作用相比,环境抽样通常对p(ES)偏差的影响较小。在独立验证中,p(TS.ES)平均仅为p(ES)的50%。p(ES)之间的广泛差异反映了这些估计值的较大抽样误差。QTL频率分布和估计的QTL效应比较表明,QTL定位的精度较低,且ES估计的QTL效应绝对值存在向上偏差。对文献中报道的三项QTL研究的数据进行CV,得到的结果与玉米测交的结果相似。因此,我们建议使用CV来获得p的渐近无偏估计,从而对MAS的前景进行实际评估。

相似文献

引用本文的文献

1
Unravelling the genetic architecture of soybean tofu quality traits.解析大豆豆腐品质性状的遗传结构。
Mol Breed. 2025 Jan 3;45(1):8. doi: 10.1007/s11032-024-01529-x. eCollection 2025 Jan.

本文引用的文献

6
Interval mapping of multiple quantitative trait loci.多个数量性状基因座的区间定位
Genetics. 1993 Sep;135(1):205-11. doi: 10.1093/genetics/135.1.205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验