Suppr超能文献

基因组选择中的综合方法以加速甘蔗的遗传增益

Integrated Approach in Genomic Selection to Accelerate Genetic Gain in Sugarcane.

作者信息

Sandhu Karansher Singh, Shiv Aalok, Kaur Gurleen, Meena Mintu Ram, Raja Arun Kumar, Vengavasi Krishnapriya, Mall Ashutosh Kumar, Kumar Sanjeev, Singh Praveen Kumar, Singh Jyotsnendra, Hemaprabha Govind, Pathak Ashwini Dutt, Krishnappa Gopalareddy, Kumar Sanjeev

机构信息

Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA.

Division of Crop Improvement, ICAR-Indian Institute of Sugarcane Research, Lucknow 226002, India.

出版信息

Plants (Basel). 2022 Aug 17;11(16):2139. doi: 10.3390/plants11162139.

Abstract

Marker-assisted selection (MAS) has been widely used in the last few decades in plant breeding programs for the mapping and introgression of genes for economically important traits, which has enabled the development of a number of superior cultivars in different crops. In sugarcane, which is the most important source for sugar and bioethanol, marker development work was initiated long ago; however, marker-assisted breeding in sugarcane has been lagging, mainly due to its large complex genome, high levels of polyploidy and heterozygosity, varied number of chromosomes, and use of low/medium-density markers. Genomic selection (GS) is a proven technology in animal breeding and has recently been incorporated in plant breeding programs. GS is a potential tool for the rapid selection of superior genotypes and accelerating breeding cycle. However, its full potential could be realized by an integrated approach combining high-throughput phenotyping, genotyping, machine learning, and speed breeding with genomic selection. For better understanding of GS integration, we comprehensively discuss the concept of genetic gain through the breeder's equation, GS methodology, prediction models, current status of GS in sugarcane, challenges of prediction accuracy, challenges of GS in sugarcane, integrated GS, high-throughput phenotyping (HTP), high-throughput genotyping (HTG), machine learning, and speed breeding followed by its prospective applications in sugarcane improvement.

摘要

在过去几十年中,标记辅助选择(MAS)已广泛应用于植物育种计划,用于绘制和导入具有经济重要性状的基因,这使得许多不同作物的优良品种得以培育。甘蔗是糖和生物乙醇的最重要来源,标记开发工作早在很久以前就已启动;然而,甘蔗的标记辅助育种一直滞后,主要原因是其基因组庞大复杂、多倍体和杂合性水平高、染色体数目多样以及使用低/中密度标记。基因组选择(GS)是动物育种中一项经过验证的技术,最近已被纳入植物育种计划。GS是快速选择优良基因型和加速育种周期的潜在工具。然而,通过将高通量表型分析、基因分型、机器学习以及与基因组选择相结合的快速育种等综合方法,可以充分发挥其潜力。为了更好地理解GS整合,我们通过育种者方程全面讨论了遗传增益的概念、GS方法、预测模型、甘蔗中GS的现状、预测准确性的挑战、甘蔗中GS的挑战、综合GS、高通量表型分析(HTP)、高通量基因分型(HTG)、机器学习和快速育种,随后介绍了其在甘蔗改良中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d699/9412483/5cdab2f88150/plants-11-02139-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验