Suppr超能文献

体内聚(dA)·聚(dT)片段所采用的异常DNA构象导致核小体不稳定。

Destabilization of nucleosomes by an unusual DNA conformation adopted by poly(dA) small middle dotpoly(dT) tracts in vivo.

作者信息

Shimizu M, Mori T, Sakurai T, Shindo H

机构信息

Department of Chemistry, Meisei University, Hino, Tokyo 191-8506 and School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan.

出版信息

EMBO J. 2000 Jul 3;19(13):3358-65. doi: 10.1093/emboj/19.13.3358.

Abstract

Poly(dA) small middle dotpoly(dT) tracts are common and often found upstream of genes in eukaryotes. It has been suggested that poly(dA) small middle dotpoly(dT) promotes transcription in vivo by affecting nucleosome formation. On the other hand, in vitro studies show that poly(dA) small middle dotpoly(dT) can be easily incorporated into nucleosomes. Therefore, the roles of these tracts in nucleosome organization in vivo remain to be established. We have developed an assay system that can evaluate nucleosome formation in yeast cells, and demonstrated that relatively longer tracts such as A(15)TATA(16) and A(34) disrupt an array of positioned nucleosomes, whereas a shorter A(5)TATA(4) tract is incorporated in positioned nucleosomes of yeast minichromosomes. Thus, nucleosomes are destabilized by poly(dA) small middle dotpoly(dT) in vivo in a length-dependent manner. Furthermore, in vivo UV footprinting revealed that the longer tracts adopt an unusual DNA structure in yeast cells that corresponds to the B' conformation described in vitro. Our results support a mechanism in which a unique poly(dA) small middle dot poly(dT) conformation presets chromatin structure to which transcription factors are accessible.

摘要

聚(dA)·聚(dT)序列很常见,在真核生物中经常在基因上游发现。有人提出聚(dA)·聚(dT)通过影响核小体形成在体内促进转录。另一方面,体外研究表明聚(dA)·聚(dT)可以很容易地整合到核小体中。因此,这些序列在体内核小体组织中的作用仍有待确定。我们开发了一种可以评估酵母细胞中核小体形成的检测系统,并证明相对较长的序列如A(15)TATA(16)和A(34)会破坏一系列定位核小体,而较短的A(5)TATA(4)序列则整合到酵母微型染色体的定位核小体中。因此,在体内聚(dA)·聚(dT)以长度依赖的方式使核小体不稳定。此外,体内紫外线足迹分析表明,较长的序列在酵母细胞中呈现出一种不寻常的DNA结构,与体外描述的B'构象相对应。我们的结果支持一种机制,即独特的聚(dA)·聚(dT)构象预先设定了染色质结构,转录因子可以与之结合。

相似文献

4
Positioned and G/C-capped poly(dA:dT) tracts associate with the centers of nucleosome-free regions in yeast promoters.
Genome Res. 2010 Apr;20(4):473-84. doi: 10.1101/gr.103226.109. Epub 2010 Feb 4.
5
Poly(dA).poly(dT) forms very stable nucleosomes at higher temperatures.
J Mol Biol. 1995 Feb 3;245(5):559-67. doi: 10.1006/jmbi.1994.0046.
6
Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo.
Nucleic Acids Res. 2000 Nov 1;28(21):4083-9. doi: 10.1093/nar/28.21.4083.
8
Poly(dA:dT) tracts: major determinants of nucleosome organization.
Curr Opin Struct Biol. 2009 Feb;19(1):65-71. doi: 10.1016/j.sbi.2009.01.004. Epub 2009 Feb 7.

引用本文的文献

1
Sequence-Dependent Shape and Stiffness of DNA and RNA Double Helices: Hexanucleotide Scale and Beyond.
J Chem Inf Model. 2025 Sep 8;65(17):9208-9229. doi: 10.1021/acs.jcim.5c00576. Epub 2025 Aug 25.
3
MNase, as a probe to study the sequence-dependent site exposures in the +1 nucleosomes of yeast.
Nucleic Acids Res. 2018 Aug 21;46(14):7124-7137. doi: 10.1093/nar/gky502.
5
Predictive Models of Recombination Rate Variation across the Drosophila melanogaster Genome.
Genome Biol Evol. 2016 Sep 2;8(8):2597-612. doi: 10.1093/gbe/evw181.
6
Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo.
Biochem Biophys Res Commun. 2016 Jul 22;476(2):57-62. doi: 10.1016/j.bbrc.2016.05.063. Epub 2016 May 18.
7
Abundance, arrangement, and function of sequence motifs in the chicken promoters.
BMC Genomics. 2014 Oct 15;15(1):900. doi: 10.1186/1471-2164-15-900.
8
Non-LTR retrotransposons and microsatellites: Partners in genomic variation.
Mob Genet Elements. 2013 Jul 1;3(4):e25674. doi: 10.4161/mge.25674. Epub 2013 Jul 11.
9
Telomeric repeats act as nucleosome-disfavouring sequences in vivo.
Nucleic Acids Res. 2014 Feb;42(3):1541-52. doi: 10.1093/nar/gkt1006. Epub 2013 Oct 29.

本文引用的文献

1
Chromatin modification by DNA tracking.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13634-7. doi: 10.1073/pnas.96.24.13634.
2
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome.
Cell. 1999 Aug 6;98(3):285-94. doi: 10.1016/s0092-8674(00)81958-3.
4
Chromatin disruption and modification.
Nucleic Acids Res. 1999 Feb 1;27(3):711-20. doi: 10.1093/nar/27.3.711.
5
DNA triple-helix formation on nucleosome-bound poly(dA).poly(dT) tracts.
Biochem J. 1998 Jul 15;333 ( Pt 2)(Pt 2):259-67. doi: 10.1042/bj3330259.
8
GCN5, a yeast transcriptional coactivator, induces chromatin reconfiguration of HIS3 promoter in vivo.
Biochem Biophys Res Commun. 1998 Jan 6;242(1):84-7. doi: 10.1006/bbrc.1997.7918.
9
X-ray fibre diffraction study of an elevated temperature structure of poly(dA).poly(dT).
J Mol Biol. 1997 Nov 21;274(1):64-71. doi: 10.1006/jmbi.1997.1378.
10
Oligoadenosine tracts favor nucleosome formation.
Biochem Biophys Res Commun. 1997 Jun 27;235(3):663-8. doi: 10.1006/bbrc.1997.6858.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验