Suppr超能文献

在体内无核小体的酵母启动子中,聚(dA.dT)序列以刚性DNA结构存在。

Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo.

作者信息

Suter B, Schnappauf G, Thoma F

机构信息

Institut für Zellbiologie, ETH-Zürich, Hönggerberg, CH-8093 Zürich, Switzerland.

出版信息

Nucleic Acids Res. 2000 Nov 1;28(21):4083-9. doi: 10.1093/nar/28.21.4083.

Abstract

Poly(dA.dT) sequences (T-tracts) are abundant genomic DNA elements with unusual properties in vitro and an established role in transcriptional regulation of yeast genes. In vitro T-tracts are rigid, contribute to DNA bending, affect assembly in nucleosomes and generate a characteristic pattern of CPDs (cyclobutane pyrimidine dimers) upon irradiation with UV light (UV photofootprint). In eukaryotic cells, where DNA is packaged in chromatin, the DNA structure of T-tracts is unknown. Here we have used in vivo UV photofootprinting and DNA repair by photolyase to investigate the structure and accessibility of T-tracts in yeast promoters (HIS3, URA3 and ILV1). The same characteristic photofootprints were obtained in yeast and in naked DNA, demonstrating that the unusual T-tract structure exists in living cells. Rapid repair of CPDs in the T-tracts demonstrates that these T-tracts were not folded in nucleosomes. Moreover, neither datin, a T-tract binding protein, nor Gcn5p, a histone acetyltransferase involved in nucleosome remodelling, showed an influence on the structure and accessibility of T-tracts. The data support a contribution of this unusual DNA structure to transcriptional regulation.

摘要

聚(dA.dT)序列(T序列)是丰富的基因组DNA元件,在体外具有不同寻常的特性,并且在酵母基因的转录调控中发挥着既定作用。体外的T序列是刚性的,有助于DNA弯曲,影响核小体的组装,并在紫外线照射时产生特征性的环丁烷嘧啶二聚体(CPD)模式(紫外线光足迹)。在DNA包装在染色质中的真核细胞中,T序列的DNA结构尚不清楚。在这里,我们利用体内紫外线光足迹法和光解酶进行DNA修复,来研究酵母启动子(HIS3、URA3和ILV1)中T序列的结构和可及性。在酵母和裸露DNA中获得了相同的特征性光足迹,表明这种不同寻常的T序列结构存在于活细胞中。T序列中CPD的快速修复表明这些T序列没有折叠在核小体中。此外,T序列结合蛋白达汀(datin)和参与核小体重塑的组蛋白乙酰转移酶Gcn5p,均未对T序列的结构和可及性产生影响。这些数据支持了这种不同寻常的DNA结构对转录调控的作用。

相似文献

1
Poly(dA.dT) sequences exist as rigid DNA structures in nucleosome-free yeast promoters in vivo.
Nucleic Acids Res. 2000 Nov 1;28(21):4083-9. doi: 10.1093/nar/28.21.4083.
2
DNA-repair by photolyase reveals dynamic properties of nucleosome positioning in vivo.
J Mol Biol. 2002 May 31;319(2):395-406. doi: 10.1016/S0022-2836(02)00291-7.
4
GCN5, a yeast transcriptional coactivator, induces chromatin reconfiguration of HIS3 promoter in vivo.
Biochem Biophys Res Commun. 1998 Jan 6;242(1):84-7. doi: 10.1006/bbrc.1997.7918.
5
Positioned and G/C-capped poly(dA:dT) tracts associate with the centers of nucleosome-free regions in yeast promoters.
Genome Res. 2010 Apr;20(4):473-84. doi: 10.1101/gr.103226.109. Epub 2010 Feb 4.
6
Chromatin structure modulates DNA repair by photolyase in vivo.
EMBO J. 1997 Apr 15;16(8):2150-60. doi: 10.1093/emboj/16.8.2150.
7
Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure.
EMBO J. 1995 Jun 1;14(11):2570-9. doi: 10.1002/j.1460-2075.1995.tb07255.x.

引用本文的文献

2
Bimodal specificity of TF-DNA recognition in embryonic stem cells.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf333.
3
Dual-plasmid interactions stimulate the accumulation of valencene in .
Biotechnol Notes. 2023 Dec 11;4:127-134. doi: 10.1016/j.biotno.2023.12.004. eCollection 2023.
4
An integrated machine-learning model to predict nucleosome architecture.
Nucleic Acids Res. 2024 Sep 23;52(17):10132-10143. doi: 10.1093/nar/gkae689.
5
Predictions of DNA mechanical properties at a genomic scale reveal potentially new functional roles of DNA flexibility.
NAR Genom Bioinform. 2023 Nov 6;5(4):lqad097. doi: 10.1093/nargab/lqad097. eCollection 2023 Dec.
7
Sequence dependencies and mutation rates of localized mutational processes in cancer.
Genome Med. 2023 Aug 17;15(1):63. doi: 10.1186/s13073-023-01217-z.
10
Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer.
Int J Mol Sci. 2021 May 25;22(11):5578. doi: 10.3390/ijms22115578.

本文引用的文献

2
DNA repair in a yeast origin of replication: contributions of photolyase and nucleotide excision repair.
Nucleic Acids Res. 2000 May 15;28(10):2060-8. doi: 10.1093/nar/28.10.2060.
3
Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene.
Nucleic Acids Res. 2000 Mar 15;28(6):1390-6. doi: 10.1093/nar/28.6.1390.
5
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome.
Cell. 1999 Aug 6;98(3):285-94. doi: 10.1016/s0092-8674(00)81958-3.
8
Alteration of nucleosome structure as a mechanism of transcriptional regulation.
Annu Rev Biochem. 1998;67:545-79. doi: 10.1146/annurev.biochem.67.1.545.
9
Distinct frequency-distributions of homopolymeric DNA tracts in different genomes.
Nucleic Acids Res. 1998 Sep 1;26(17):4056-62. doi: 10.1093/nar/26.17.4056.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验