Eliasson A, Christensson C, Wahlbom C F, Hahn-Hägerdal B
Department of Applied Microbiology, Lund University, Sweden.
Appl Environ Microbiol. 2000 Aug;66(8):3381-6. doi: 10.1128/AEM.66.8.3381-3386.2000.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h(-1) g (dry weight) of cells(-1) (0.24 to 0.30 g h(-1) g [dry weight] of cells(-1)) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h(-1). The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h(-1) g (dry weight) of cells(-1) when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h(-1) g (dry weight) of cells(-1) when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.
对于从木质纤维素生产乙醇而言,木糖发酵在经济上是必要的。酿酒酵母已通过木糖利用途径进行了代谢工程改造。然而,尚未实现与葡萄糖相当的高乙醇产量和生产率。为了定量分析重组酿酒酵母在木糖 - 葡萄糖混合物代谢过程中的代谢通量,我们构建了一个稳定的木糖利用重组菌株TMB 3001。来自树干毕赤酵母的XYL1和XYL2基因,分别编码木糖还原酶(XR)和木糖醇脱氢酶(XDH),以及编码木酮糖激酶(XK)的内源性XKS1基因,在PGK1启动子的控制下被整合到酿酒酵母CEN.PK 113 - 7A的染色体HIS3位点。该菌株分别表达了活性为0.4至0.5、2.7至3.4和1.5至1.7 U/mg的XR、XDH和XK,并且在连续发酵中稳定超过40代。首次证明了重组酿酒酵母从木糖厌氧形成乙醇。然而,该菌株仅在有氧存在的情况下才能在木糖上生长。在厌氧恒化器培养中,以0.06 h(-1)的稀释率,从木糖 - 葡萄糖混合物中获得的乙醇产量为0.45至0.50 mmol C/mmol C(0.35至0.38 g/g),生产率为9.7至13.2 mmol C h(-1) g(干重)细胞(-1)(0.24至0.30 g h(-1) g [干重]细胞(-1))。假设葡萄糖上的乙醇产量恒定,木糖上的厌氧乙醇产量估计为0.27 mol C/(木糖的mol C)(0.21 g/g)。木糖摄取率随着进料中木糖浓度的增加而增加,当进料中木糖与葡萄糖的比例为1:3时为3.3 mmol C h(-1) g(干重)细胞(-1),当进料比例为3:1时为6.8 mmol C h(-1) g(干重)细胞(-(1))。当进料含量为15 g木糖/升和5 g葡萄糖/升时,木糖通量比葡萄糖通量低2.2倍,表明转运限制了木糖通量。