Suppr超能文献

在矿物培养基恒化器培养中,携带XYL1、XYL2和XKS1的重组酿酒酵母进行厌氧木糖发酵。

Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.

作者信息

Eliasson A, Christensson C, Wahlbom C F, Hahn-Hägerdal B

机构信息

Department of Applied Microbiology, Lund University, Sweden.

出版信息

Appl Environ Microbiol. 2000 Aug;66(8):3381-6. doi: 10.1128/AEM.66.8.3381-3386.2000.

Abstract

For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h(-1) g (dry weight) of cells(-1) (0.24 to 0.30 g h(-1) g [dry weight] of cells(-1)) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h(-1). The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h(-1) g (dry weight) of cells(-1) when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h(-1) g (dry weight) of cells(-1) when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.

摘要

对于从木质纤维素生产乙醇而言,木糖发酵在经济上是必要的。酿酒酵母已通过木糖利用途径进行了代谢工程改造。然而,尚未实现与葡萄糖相当的高乙醇产量和生产率。为了定量分析重组酿酒酵母在木糖 - 葡萄糖混合物代谢过程中的代谢通量,我们构建了一个稳定的木糖利用重组菌株TMB 3001。来自树干毕赤酵母的XYL1和XYL2基因,分别编码木糖还原酶(XR)和木糖醇脱氢酶(XDH),以及编码木酮糖激酶(XK)的内源性XKS1基因,在PGK1启动子的控制下被整合到酿酒酵母CEN.PK 113 - 7A的染色体HIS3位点。该菌株分别表达了活性为0.4至0.5、2.7至3.4和1.5至1.7 U/mg的XR、XDH和XK,并且在连续发酵中稳定超过40代。首次证明了重组酿酒酵母从木糖厌氧形成乙醇。然而,该菌株仅在有氧存在的情况下才能在木糖上生长。在厌氧恒化器培养中,以0.06 h(-1)的稀释率,从木糖 - 葡萄糖混合物中获得的乙醇产量为0.45至0.50 mmol C/mmol C(0.35至0.38 g/g),生产率为9.7至13.2 mmol C h(-1) g(干重)细胞(-1)(0.24至0.30 g h(-1) g [干重]细胞(-1))。假设葡萄糖上的乙醇产量恒定,木糖上的厌氧乙醇产量估计为0.27 mol C/(木糖的mol C)(0.21 g/g)。木糖摄取率随着进料中木糖浓度的增加而增加,当进料中木糖与葡萄糖的比例为1:3时为3.3 mmol C h(-1) g(干重)细胞(-1),当进料比例为3:1时为6.8 mmol C h(-1) g(干重)细胞(-(1))。当进料含量为15 g木糖/升和5 g葡萄糖/升时,木糖通量比葡萄糖通量低2.2倍,表明转运限制了木糖通量。

相似文献

7
Physiological and enzymatic comparison between Pichia stipitis and recombinant Saccharomyces cerevisiae on xylose fermentation.
World J Microbiol Biotechnol. 2013 Mar;29(3):541-7. doi: 10.1007/s11274-012-1208-x. Epub 2012 Nov 20.

引用本文的文献

3
Metabolic Engineering of for Xylose Utilization from Cellulosic Biomass.
Molecules. 2024 Dec 2;29(23):5695. doi: 10.3390/molecules29235695.
4
Engineering of for co-fermentation of glucose and xylose: Current state and perspectives.
Eng Microbiol. 2023 Mar 20;3(3):100084. doi: 10.1016/j.engmic.2023.100084. eCollection 2023 Sep.
5
An atlas of rational genetic engineering strategies for improved xylose metabolism in .
PeerJ. 2023 Nov 28;11:e16340. doi: 10.7717/peerj.16340. eCollection 2023.
7
Re-evaluation of the impact of deletion on xylose utilization by .
Metab Eng Commun. 2023 Jan 25;16:e00218. doi: 10.1016/j.mec.2023.e00218. eCollection 2023 Jun.
9
Enzyme Cascade Reactions on DNA Origami Scaffold.
Methods Mol Biol. 2023;2639:275-299. doi: 10.1007/978-1-0716-3028-0_16.
10
Deletion of in a recombinant improved xylose utilization and affected transcription of genes related to amino acid metabolism.
Front Microbiol. 2022 Sep 8;13:960114. doi: 10.3389/fmicb.2022.960114. eCollection 2022.

本文引用的文献

1
Control of recombination within and between DNA plasmids of Saccharomyces cerevisiae.
Curr Genet. 1980 Dec;2(3):193-200. doi: 10.1007/BF00435685.
4
Effect of Oxygenation on Xylose Fermentation by Pichia stipitis.
Appl Environ Microbiol. 1990 Nov;56(11):3389-94. doi: 10.1128/aem.56.11.3389-3394.1990.
5
Intermediary Metabolite Concentrations in Xylulose- and Glucose-Fermenting Saccharomyces cerevisiae Cells.
Appl Environ Microbiol. 1990 Jan;56(1):120-6. doi: 10.1128/aem.56.1.120-126.1990.
6
Metabolism of d-xylose by moulds.
Nature. 1960 Oct 1;188:79-81. doi: 10.1038/188079a0.
8
Enzymatic isomerization of D-xylose to D-xylulose.
Arch Biochem Biophys. 1954 Jan;48(1):120-9. doi: 10.1016/0003-9861(54)90313-6.
9
Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium.
J Cell Comp Physiol. 1953 Feb;41(1):23-36. doi: 10.1002/jcp.1030410103.
10
Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2000 Apr;53(4):376-82. doi: 10.1007/s002530051629.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验