Fernandez A S, Hashsham S A, Dollhopf S L, Raskin L, Glagoleva O, Dazzo F B, Hickey R F, Criddle C S, Tiedje J M
Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
Appl Environ Microbiol. 2000 Sep;66(9):4058-67. doi: 10.1128/AEM.66.9.4058-4067.2000.
Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage of Methanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by cocci, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanosaeta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes by Eubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities (S. A. Hashsham, A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje, and C. S. Criddle, Appl. Environ. Microbiol. 66:4050-4057, 2000).
产甲烷生物反应器群落被用作模型生态系统,以评估功能稳定性与群落结构之间的关系。构建了具有两种不同群落结构的重复产甲烷生物反应器群落。通过形态分析、小亚基(SSU)rRNA寡核苷酸探针、扩增核糖体DNA(rDNA)限制性分析(ARDRA)以及SSU rDNA克隆的部分测序,研究了底物负荷冲击对每个微生物群落中种群动态的影响。一组重复群落,命名为高螺旋体(HS)组,其特点是具有良好的可重复性、螺旋形和短细杆形态型的高比例、与螺旋体相关的SSU rDNA基因占主导地位以及与甲烷八叠球菌相关的SSU rRNA的高百分比。第二组群落,命名为低螺旋体(LS)组,其特点是可重复性不完全、以球菌为主的更高形态型多样性、与链球菌相关和与深分支螺旋体目相关的SSU rDNA基因占优势以及与甲烷丝状菌相关的SSU rRNA的高百分比。在HS群落中,葡萄糖扰动导致发酵细菌的相对丰度发生显著变化,与真细菌相关的核糖体类型暂时取代了与螺旋体相关的核糖体类型,随后又恢复到扰动前的群落结构。LS群落受到的扰动较小,尽管通过形态型分析检测到次要成员的相对丰度发生了变化,但在葡萄糖冲击后与链球菌相关的生物体仍然普遍存在。一篇配套论文表明,更稳定的LS群落在功能上不如HS群落稳定(S. A. Hashsham、A. S. Fernandez、S. L. Dollhopf、F. B. Dazzo、R. F. Hickey、J. M. Tiedje和C. S. Criddle,《应用与环境微生物学》66:4050 - 4057,2000年)。