Tsuchiya T, Gouda N
Department of Astronomy, Kyoto University, Kyoto, 606-8502, Japan.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000 Jan;61(1):948-51. doi: 10.1103/physreve.61.948.
The relation between relaxation, the time scale of Lyapunov instabilities, and the Kolmogorov-Sinai time in a one-dimensional gravitating sheet system is studied. Both the maximum Lyapunov exponent and the Kolmogorov-Sinai entropy decrease as proportional to N(-1/5). The time scales determined by these quantities evidently differ from any type of relaxation time found in the previous investigations. The relaxation time to quasiequilibria (microscopic relaxation) is found to have the same N dependence as the inverse of the minimum positive Lyapunov exponent. The relaxation time to the final thermal equilibrium differs from the inverse of the Lyapunov exponents and the Kolmogorov-Sinai time.
研究了一维引力片层系统中弛豫、李雅普诺夫不稳定性的时间尺度与柯尔莫哥洛夫-西奈时间之间的关系。最大李雅普诺夫指数和柯尔莫哥洛夫-西奈熵均与N^(-1/5)成比例减小。由这些量确定的时间尺度明显不同于先前研究中发现的任何类型的弛豫时间。达到准平衡(微观弛豫)的弛豫时间与最小正李雅普诺夫指数的倒数具有相同的N依赖性。达到最终热平衡的弛豫时间不同于李雅普诺夫指数的倒数和柯尔莫哥洛夫-西奈时间。