Suppr超能文献

相似文献

1
A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta.
Plant Cell. 2000 Nov;12(11):2019-32. doi: 10.1105/tpc.12.11.2019.
2
3
Direct interaction of resistance gene and avirulence gene products confers rice blast resistance.
EMBO J. 2000 Aug 1;19(15):4004-14. doi: 10.1093/emboj/19.15.4004.
4
Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene.
Mol Plant Microbe Interact. 2001 May;14(5):671-4. doi: 10.1094/MPMI.2001.14.5.671.
5
Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence.
Fungal Genet Biol. 2007 Oct;44(10):1024-34. doi: 10.1016/j.fgb.2007.02.003. Epub 2007 Feb 21.
6
7
Coevolutionary Dynamics of Rice Blast Resistance Gene Pi-ta and Magnaporthe oryzae Avirulence Gene AVR-Pita 1.
Phytopathology. 2016 Jul;106(7):676-83. doi: 10.1094/PHYTO-02-16-0057-RVW. Epub 2016 May 13.
8
Molecular mapping of two cultivar-specific avirulence genes in the rice blast fungus Magnaporthe grisea.
Mol Genet Genomics. 2007 Feb;277(2):139-48. doi: 10.1007/s00438-006-0179-8. Epub 2006 Nov 7.
9
Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex.
Mol Plant Microbe Interact. 2008 May;21(5):658-70. doi: 10.1094/MPMI-21-5-0658.
10
Transposon-based high sequence diversity in Avr-Pita alleles increases the potential for pathogenicity of Magnaporthe oryzae populations.
Funct Integr Genomics. 2014 Jun;14(2):419-29. doi: 10.1007/s10142-014-0369-0. Epub 2014 Mar 15.

引用本文的文献

1
A century of advances in molecular genetics and breeding for sustainable resistance to rice blast disease.
Theor Appl Genet. 2025 Jul 5;138(7):174. doi: 10.1007/s00122-025-04962-4.
3
CAP superfamily proteins (VdPRYs) manipulate plant immunity and contribute to the virulence of .
Mycology. 2024 Nov 8;16(2):876-890. doi: 10.1080/21501203.2024.2419882. eCollection 2025.
5
Diversification, loss, and virulence gains of the major effector AvrStb6 during continental spread of the wheat pathogen Zymoseptoria tritici.
PLoS Pathog. 2025 Mar 31;21(3):e1012983. doi: 10.1371/journal.ppat.1012983. eCollection 2025 Mar.
6
Status on Genetic Resistance to Rice Blast Disease in the Post-Genomic Era.
Plants (Basel). 2025 Mar 5;14(5):807. doi: 10.3390/plants14050807.
7
From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi.
J Fungi (Basel). 2025 Jan 1;11(1):25. doi: 10.3390/jof11010025.
10
The roles of avirulence effectors involved in blast resistance/susceptibility.
Front Plant Sci. 2024 Oct 9;15:1478159. doi: 10.3389/fpls.2024.1478159. eCollection 2024.

本文引用的文献

1
Molecular genetic analysis of the rice blast fungus, magnaporthe grisea.
Annu Rev Phytopathol. 1991;29:443-67. doi: 10.1146/annurev.py.29.090191.002303.
2
Karyotypic Variation within Clonal Lineages of the Rice Blast Fungus, Magnaporthe grisea.
Appl Environ Microbiol. 1993 Feb;59(2):585-93. doi: 10.1128/aem.59.2.585-593.1993.
3
Bacterial avirulence genes.
Annu Rev Phytopathol. 1996;34:153-79. doi: 10.1146/annurev.phyto.34.1.153.
5
Direct interaction of resistance gene and avirulence gene products confers rice blast resistance.
EMBO J. 2000 Aug 1;19(15):4004-14. doi: 10.1093/emboj/19.15.4004.
6
Telomeric silencing of a natural subtelomeric gene.
Mol Gen Genet. 2000 Mar;263(2):287-91. doi: 10.1007/s004380051170.
7
Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers.
Mol Plant Microbe Interact. 2000 Feb;13(2):217-27. doi: 10.1094/MPMI.2000.13.2.217.
8
Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector.
Science. 1999 Sep 17;285(5435):1920-3. doi: 10.1126/science.285.5435.1920.
9
The PROSITE database, its status in 1999.
Nucleic Acids Res. 1999 Jan 1;27(1):215-9. doi: 10.1093/nar/27.1.215.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验