Suppr超能文献

荟萃分析中治疗效果与潜在风险之间关系的分析:方法的比较与发展

Analysing the relationship between treatment effect and underlying risk in meta-analysis: comparison and development of approaches.

作者信息

Sharp S J, Thompson S G

机构信息

Medical Data Sciences, Glaxo Wellcome Research and Development, Greenford Road, Greenford, Middlesex, UB6 0HE, UK.

出版信息

Stat Med. 2000 Dec 15;19(23):3251-74. doi: 10.1002/1097-0258(20001215)19:23<3251::aid-sim625>3.0.co;2-2.

Abstract

Three approaches for estimating the relationship between treatment effect and underlying risk in a meta-analysis of clinical trials have recently been published. The aim of each is to overcome the bias inherent in conventional regressions of treatment effect on control group risk, which arises from the measurement error in the observed control group risks in different trials. Here we describe these published approaches, and compare them with respect to their underlying models and methods of implementation. The underlying model for one of them is shown to be seriously flawed, while the other two are both statistically more appropriate than the conventional approaches, and differ from each other in only two assumptions. Both may be implemented using the Gibbs sampling algorithm in BUGS, and are exemplified here using a meta-analysis of mortality and bleeding data in trials of sclerotherapy for patients with cirrhosis. One approach is developed further; for the illustrative example considered, it is shown to be robust to different choices of prior distributions for the model parameters, and to the assumption of a linear relationship on a log-odds scale. It can also be used to estimate the level of underlying risk (and its standard error) at which the treatment effect crosses from benefit to harm, and other trial-level covariates may be included in the model as confounders. The BUGS code is provided in an Appendix, to enable applied researchers to perform the various analyses described.

摘要

近期发表了三种在临床试验的荟萃分析中估计治疗效果与潜在风险之间关系的方法。每种方法的目的都是克服传统的治疗效果对对照组风险回归中固有的偏差,这种偏差源于不同试验中观察到的对照组风险的测量误差。在此,我们描述这些已发表的方法,并在其基础模型和实施方法方面对它们进行比较。结果表明其中一种方法的基础模型存在严重缺陷,而另外两种方法在统计学上都比传统方法更合适,并且仅在两个假设上彼此不同。这两种方法都可以使用BUGS中的吉布斯采样算法来实现,此处以肝硬化患者硬化治疗试验中的死亡率和出血数据的荟萃分析为例进行说明。其中一种方法得到了进一步拓展;对于所考虑的示例,结果表明它对于模型参数的先验分布的不同选择以及对数优势尺度上的线性关系假设具有稳健性。它还可用于估计治疗效果从有益转变为有害时的潜在风险水平(及其标准误差),并且其他试验水平的协变量可以作为混杂因素纳入模型。附录中提供了BUGS代码,以使应用研究人员能够进行所描述的各种分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验