Suppr超能文献

一种用于随机试验中对偏离随机缺失假设进行敏感性分析的平均得分方法。

A mean score method for sensitivity analysis to departures from the missing at random assumption in randomised trials.

作者信息

White Ian R, Carpenter James, Horton Nicholas J

机构信息

MRC Biostatistics Unit, Cambridge, UK.

MRC Clinical Trials Unit at UCL, London, UK.

出版信息

Stat Sin. 2018 Oct;28(4):1985-2003. doi: 10.5705/ss.202016.0308.

Abstract

Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial.

摘要

大多数对存在不完整结局的随机试验的分析都做出了无法检验的假设,因此应进行敏感性分析。然而,敏感性分析方法并未得到广泛应用。我们提出一种平均得分方法,用于探究在随机试验中偏离随机缺失或关于不完整结局数据的其他假设时的全局敏感性。我们假设在广义线性模型下分析单个结局。由用户指定的一个或多个敏感性参数,在模式混合模型中衡量偏离随机缺失的程度。我们方法的优点在于其敏感性参数相对易于解释,因此可以从主题专家那里获取;它快速且非随机;当敏感性参数的特定值使那些标准方法适用时,其点估计、标准误差和置信区间与标准方法完全一致。我们使用一项心理健康试验的数据来说明该方法。

相似文献

5
Including all individuals is not enough: lessons for intention-to-treat analysis.
Clin Trials. 2012 Aug;9(4):396-407. doi: 10.1177/1740774512450098. Epub 2012 Jul 2.
8
Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation.
BMC Med Res Methodol. 2015 Oct 13;15:83. doi: 10.1186/s12874-015-0074-2.
9
Missing data in trial-based cost-effectiveness analysis: An incomplete journey.
Health Econ. 2018 Jun;27(6):1024-1040. doi: 10.1002/hec.3654. Epub 2018 Mar 24.
10
Eliciting and using expert opinions about dropout bias in randomized controlled trials.
Clin Trials. 2007;4(2):125-39. doi: 10.1177/1740774507077849.

引用本文的文献

8
Effectiveness and safety of telehealth medication abortion in the USA.
Nat Med. 2024 Apr;30(4):1191-1198. doi: 10.1038/s41591-024-02834-w. Epub 2024 Feb 15.

本文引用的文献

1
Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis.
Stat Med. 2015 Feb 28;34(5):721-41. doi: 10.1002/sim.6365. Epub 2014 Nov 13.
2
Sensitivity analysis for a partially missing binary outcome in a two-arm randomized clinical trial.
Stat Med. 2014 Oct 30;33(24):4170-85. doi: 10.1002/sim.6197. Epub 2014 May 20.
4
Including all individuals is not enough: lessons for intention-to-treat analysis.
Clin Trials. 2012 Aug;9(4):396-407. doi: 10.1177/1740774512450098. Epub 2012 Jul 2.
5
Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis.
CMAJ. 2012 Aug 7;184(11):1265-9. doi: 10.1503/cmaj.110977. Epub 2012 Feb 27.
7
Multiple imputation using chained equations: Issues and guidance for practice.
Stat Med. 2011 Feb 20;30(4):377-99. doi: 10.1002/sim.4067. Epub 2010 Nov 30.
8
How much can we learn about missing data?: an exploration of a clinical trial in psychiatry.
J R Stat Soc Ser A Stat Soc. 2010 Jul;173(3):593-612. doi: 10.1111/j.1467-985X.2009.00627.x.
9
Bias in odds ratios by logistic regression modelling and sample size.
BMC Med Res Methodol. 2009 Jul 27;9:56. doi: 10.1186/1471-2288-9-56.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验