Suppr超能文献

研究人机术语界面。

Studying the human-computer-terminology interface.

作者信息

Cimino J J, Patel V L, Kushniruk A W

机构信息

Department of Medical Informatics, Columbia-Presbyterian Medical Center, 622 West 168th Street, VC-5, New York, NY 10032, USA.

出版信息

J Am Med Inform Assoc. 2001 Mar-Apr;8(2):163-73. doi: 10.1136/jamia.2001.0080163.

Abstract

OBJECTIVE

To explore the use of an observational, cognitive-based approach for differentiating between successful, suboptimal, and failed entry of coded data by clinicians in actual practice, and to detect whether causes for unsuccessful attempts to capture true intended meaning were due to terminology content, terminology representation, or user interface problems.

DESIGN

Observational study with videotaping and subsequent coding of data entry events in an outpatient clinic at New York Presbyterian Hospital.

PARTICIPANTS

Eight attending physicians, 18 resident physicians, and 1 nurse practitioner, using the Medical Entities Dictionary (MED) to record patient problems, medications, and adverse reactions in an outpatient medical record system.

MEASUREMENTS

Classification of data entry events as successful, suboptimal, or failed, and estimation of cause; recording of system response time and total event time.

RESULTS

Two hundred thirty-eight data entry events were analyzed; 71.0 percent were successful, 6.3 percent suboptimal, and 22.7 percent failed; unsuccessful entries were due to problems with content in 13.0 percent of events, representation problems in 10.1 percent of events, and usability problems in 5.9 percent of events. Response time averaged 0.74 sec, and total event time averaged 40.4 sec. Of an additional 209 tasks related to drug dose and frequency terms, 94 percent were successful, 0.5 percent were suboptimal, and 6 percent failed, for an overall success rate of 82 percent.

CONCLUSIONS

Data entry by clinicians using the outpatient system and the MED was generally successful and efficient. The cognitive-based observational approach permitted detection of false-positive (suboptimal) and false-negative (failed due to user interface) data entry.

摘要

目的

探讨采用基于认知的观察性方法,以区分临床医生在实际操作中编码数据输入成功、次优和失败的情况,并检测未能捕捉到真实意图的原因是术语内容、术语表示还是用户界面问题。

设计

在纽约长老会医院的门诊进行录像及随后对数据录入事件进行编码的观察性研究。

参与者

8名主治医师、18名住院医师和1名执业护士,使用医学实体词典(MED)在门诊病历系统中记录患者问题、药物和不良反应。

测量

将数据录入事件分类为成功、次优或失败,并估计原因;记录系统响应时间和总事件时间。

结果

分析了238次数据录入事件;71.0%成功,6.3%次优,22.7%失败;录入失败的原因中,13.0%是由于内容问题,10.1%是由于表示问题,5.9%是由于可用性问题。响应时间平均为0.74秒,总事件时间平均为40.4秒。在另外209项与药物剂量和频率术语相关的任务中,94%成功,0.5%次优,6%失败,总体成功率为82%。

结论

临床医生使用门诊系统和MED进行数据录入总体上是成功且高效的。基于认知的观察性方法能够检测到假阳性(次优)和假阴性(因用户界面导致失败)的数据录入情况。

相似文献

1
Studying the human-computer-terminology interface.研究人机术语界面。
J Am Med Inform Assoc. 2001 Mar-Apr;8(2):163-73. doi: 10.1136/jamia.2001.0080163.
10

引用本文的文献

4
Enhancing electronic health records to support clinical research.
AMIA Jt Summits Transl Sci Proc. 2014 Apr 7;2014:102-8. eCollection 2014.
9
Using SNOMED CT to represent two interface terminologies.使用SNOMED CT来表示两种接口术语。
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):81-8. doi: 10.1197/jamia.M2694. Epub 2008 Oct 24.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验