Tezcan F A, Crane B R, Winkler J R, Gray H B
Beckman Institute, MC 139-74, California Institute of Technology, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5002-6. doi: 10.1073/pnas.081072898. Epub 2001 Apr 10.
The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation-reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s(-1) for *Zn-cyt c --> Fe(III)-cyt c; 2000 s(-1) for Fe(II)-cyt c --> Zn-cyt c(+))] over a Zn-Fe distance of 24.1 A closely match those for intraprotein electron tunneling over similar donor-acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein-protein interface.
目前对电子通过蛋白质进行隧穿的理解来自于对供体和受体保持固定距离和取向的系统的研究。由于在隧穿发生的极短时间内反应物的相对取向和结构存在不确定性,控制蛋白质间电子流动的因素还不太清楚。正如我们在此报道的,解决这种结构模糊性的方法是研究蛋白质晶体中的氧化还原反应。因此,我们测量并分析了已知结构晶体中天然和锌取代的金枪鱼细胞色素c(cyt c)分子之间的电子转移动力学。在24.1埃的锌 - 铁距离上的电子转移速率[(*Zn - cyt c→Fe(III) - cyt c为320 s⁻¹;Fe(II) - cyt c→Zn - cyt c⁺为2000 s⁻¹)]与类似供体 - 受体间距下蛋白质内电子隧穿的速率紧密匹配。我们的结果表明,范德华相互作用和水介导的氢键是跨蛋白质 - 蛋白质界面隧穿的有效耦合元件。