Sinha N, Tsai C J, Nussinov R
Intramural Research Support Program - SAIC, Laboratory of Experimental and Computational Biology, NCI-FCRDC, Frederick, MD 21702, USA.
Protein Eng. 2001 Feb;14(2):93-103. doi: 10.1093/protein/14.2.93.
We propose a model illustrating how proteins, which differ in their overall sequences and structures, can form the propagating, twisted beta-sheet conformations, characteristic of amyloids. Some cases of amyloid formation can be explained through a "domain swapping" event, where the swapped segment is either a beta-hairpin or an unstable conformation which can partially unfold and assume a beta-hairpin structure. As in domain swapping, here the swapped beta-hairpin is at the edge of the structure, has few (if any) salt bridges and hydrogen bonds connecting it to the remainder of the structure and variable extents of buried non-polar surface areas. Additionally, in both cases the swapped piece constitutes a transient "building block" of the structure, with a high population time. Whereas in domain swapping the swapped fragment has been shown to be an alpha-helix, loop, strand or an entire domain, but so far not a beta-hairpin, despite the large number of cases in which it was already detected, here swapping may involve such a structural motif. We show how the swapping of beta-hairpins would form an interdigitated, twisted beta-sheet conformation, explaining the remarkable high stability of the protofibril in vitro. Such a swapping mechanism is attractive as it involves a universal mechanism in proteins, critical for their function, namely hinge-bending motions. Our proposal is consistent with structural superpositioning of mutational variants. While the overall r.m.s.d.s of the wild-type and mutants are small, the proposed hinge-bending region consistently shows larger deviations. These larger deviations illustrate that this region is more prone to respond to the mutational changes, regardless of their location in the sequence or in the structure. Nevertheless, above all, we stress that this proposition is hypothetical, since it is based on assumptions lacking definitive experimental support.
我们提出了一个模型,该模型阐述了序列和结构各异的蛋白质如何形成具有淀粉样蛋白特征的传播性扭曲β-折叠构象。某些淀粉样蛋白形成的情况可以通过“结构域交换”事件来解释,其中交换的片段要么是β-发夹结构,要么是不稳定的构象,这种构象可以部分展开并呈现β-发夹结构。与结构域交换的情况一样,这里交换的β-发夹结构位于结构边缘,与结构其余部分相连的盐桥和氢键很少(如果有的话),并且埋藏的非极性表面积的程度各不相同。此外,在这两种情况下,交换的片段都构成了结构的一个短暂“构建模块”,具有较长的存在时间。在结构域交换中,已表明交换的片段是α-螺旋、环、链或整个结构域,但到目前为止不是β-发夹结构,尽管已经在大量案例中检测到它,但在这里交换可能涉及这样一种结构基序。我们展示了β-发夹结构的交换如何形成相互交错的扭曲β-折叠构象,从而解释了原纤维在体外具有显著高稳定性的原因。这种交换机制很有吸引力,因为它涉及蛋白质中一种对其功能至关重要的普遍机制,即铰链弯曲运动。我们的提议与突变变体的结构叠加一致。虽然野生型和突变体的整体均方根偏差较小,但提议的铰链弯曲区域始终显示出较大的偏差。这些较大的偏差表明该区域更容易对突变变化做出反应,无论这些突变在序列或结构中的位置如何。然而,最重要的是,我们强调这个提议是假设性的,因为它基于缺乏确凿实验支持的假设。