Suppr超能文献

100千碱基基因组DNA在枯草芽孢杆菌168中向质粒的重组转移。

Recombinational transfer of 100-kilobase genomic DNA to plasmid in Bacillus subtilis 168.

作者信息

Tsuge K, Itaya M

机构信息

Mitsubishi Kasei Institute of Life Sciences, Machida-Shi, Tokyo 194-8511, Japan.

出版信息

J Bacteriol. 2001 Sep;183(18):5453-8. doi: 10.1128/JB.183.18.5453-5458.2001.

Abstract

Transformation of Bacillus subtilis by a plasmid requires a circular multimeric form. In contrast, linearized plasmids can be circularized only when homologous sequences are present in the host genome. A recombinational transfer system was constructed with this intrinsic B. subtilis recombinational repair pathway. The vector, pGETS103, a derivative of the theta-type replicating plasmid pTB19 of thermophilic Bacillus, had the full length of Escherichia coli plasmid pBR322. A multimeric form of pGETS103 yielded tetracycline-resistant transformants of B. subtilis. In contrast, linearized pGETS103 gave tetracycline-resistant transformants only when the recipient strain had the pBR322 sequence in the genome. The efficiency and fidelity of the recombinational transfer of DNAs of up to 90 kb are demonstrated.

摘要

质粒对枯草芽孢杆菌的转化需要环状多聚体形式。相比之下,线性化质粒只有在宿主基因组中存在同源序列时才能环化。利用枯草芽孢杆菌固有的重组修复途径构建了一个重组转移系统。载体pGETS103是嗜热芽孢杆菌的θ型复制质粒pTB19的衍生物,含有大肠杆菌质粒pBR322的全长序列。pGETS103的多聚体形式产生了对四环素耐药的枯草芽孢杆菌转化体。相比之下,只有当受体菌株基因组中含有pBR322序列时,线性化的pGETS103才能产生对四环素耐药的转化体。研究证明了长达90 kb的DNA重组转移的效率和保真度。

相似文献

1
Recombinational transfer of 100-kilobase genomic DNA to plasmid in Bacillus subtilis 168.
J Bacteriol. 2001 Sep;183(18):5453-8. doi: 10.1128/JB.183.18.5453-5458.2001.
2
Two replication determinants of an antibiotic-resistance plasmid, pTB19, from a thermophilic bacillus.
J Gen Microbiol. 1984 Jun;130(6):1399-408. doi: 10.1099/00221287-130-6-1399.
3
The first high frequency of recombination-like conjugal transfer from an integrated origin of transfer sequence in Bacillus subtilis 168.
Biosci Biotechnol Biochem. 2018 Feb;82(2):356-362. doi: 10.1080/09168451.2017.1422970. Epub 2018 Jan 10.
4
Targeted isolation of a designated region of the Bacillus subtilis genome by recombinational transfer.
Appl Environ Microbiol. 2004 Apr;70(4):2508-13. doi: 10.1128/AEM.70.4.2508-2513.2004.
5
Region dependent efficiency for recombinational transfer of the Bacillus subtilis 168 genome.
Biosci Biotechnol Biochem. 2004 Jun;68(6):1382-4. doi: 10.1271/bbb.68.1382.
6
Plasmid replication stimulates DNA recombination in Bacillus subtilis.
J Mol Biol. 1987 Jul 5;196(1):39-48. doi: 10.1016/0022-2836(87)90509-2.

引用本文的文献

1
Heterologous production of novel and rare C-carotenoids using Planococcus carotenoid biosynthesis genes.
Microb Cell Fact. 2021 Oct 9;20(1):194. doi: 10.1186/s12934-021-01683-3.
2
Integration of large heterologous DNA fragments into the genome of Thermococcus kodakarensis.
Extremophiles. 2020 May;24(3):339-353. doi: 10.1007/s00792-020-01159-z. Epub 2020 Feb 28.
3
CopySwitch- Optimization of Gene Copy Numbers for Heterologous Gene Expression in .
Front Bioeng Biotechnol. 2019 Jan 8;6:207. doi: 10.3389/fbioe.2018.00207. eCollection 2018.
4
Biomimetic strategy for constructing cellulosomal operons in .
Biotechnol Biofuels. 2018 Jun 7;11:157. doi: 10.1186/s13068-018-1151-7. eCollection 2018.
5
Bryostatins: biological context and biotechnological prospects.
Curr Opin Biotechnol. 2010 Dec;21(6):834-42. doi: 10.1016/j.copbio.2010.09.018.
6
Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15971-6. doi: 10.1073/pnas.0503868102. Epub 2005 Oct 18.
7
Targeted isolation of a designated region of the Bacillus subtilis genome by recombinational transfer.
Appl Environ Microbiol. 2004 Apr;70(4):2508-13. doi: 10.1128/AEM.70.4.2508-2513.2004.
9
Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector.
Nucleic Acids Res. 2003 Sep 15;31(18):e112. doi: 10.1093/nar/gng114.

本文引用的文献

1
Genetic exchange and evolutionary divergence in prokaryotes.
Trends Ecol Evol. 1994 May;9(5):175-80. doi: 10.1016/0169-5347(94)90081-7. Epub 2003 Nov 7.
2
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
3
DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae.
Nature. 2000 Aug 3;406(6795):477-83. doi: 10.1038/35020000.
4
Searching for the common ancestor.
Res Microbiol. 2000 Mar;151(2):85-9. doi: 10.1016/s0923-2508(00)00124-8.
5
Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1.
Science. 1999 Nov 19;286(5444):1571-7. doi: 10.1126/science.286.5444.1571.
6
Fate of unstable Bacillus subtilis subgenome: re-integration and amplification in the main genome.
FEBS Lett. 1999 Apr 9;448(2-3):235-8. doi: 10.1016/s0014-5793(99)00351-8.
7
Genetic transfer of large DNA inserts to designated loci of the Bacillus subtilis 168 genome.
J Bacteriol. 1999 Feb;181(3):1045-8. doi: 10.1128/JB.181.3.1045-1048.1999.
8
Experimental surgery to create subgenomes of Bacillus subtilis 168.
Proc Natl Acad Sci U S A. 1997 May 13;94(10):5378-82. doi: 10.1073/pnas.94.10.5378.
9
A new vector for recombination-based cloning of large DNA fragments from yeast artificial chromosomes.
Nucleic Acids Res. 1995 Dec 11;23(23):4850-6. doi: 10.1093/nar/23.23.4850.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验