Suppr超能文献

Measurement of blood flow through the retinal circulation of the cat during normoxia and hypoxemia using fluorescent microspheres.

作者信息

Ahmed J, Pulfer M K, Linsenmeier R A

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA.

出版信息

Microvasc Res. 2001 Sep;62(2):143-53. doi: 10.1006/mvre.2001.2321.

Abstract

The most successful method for measuring absolute blood flow rate through the retinal circulation has been the use of radioactive microspheres. The purpose of this study was to develop a microsphere method that did not have the drawbacks associated with radioactivity and to use this method to make measurements of retinal blood flow in the cat. Blood flow measurements were made by injecting 15-microm-diameter polystyrene microspheres into the left ventricle of anesthetized, artificially ventilated cats. These microspheres were labeled with one of three fluorescent dyes. Retinal blood flow measurements were made by determining the number of spheres that were embedded in the retina and comparing them to the number found in a reference sample. Spheres in the retina were counted by making retinal whole mounts and taking retinal images with a CCD camera mounted on an epifluorescence microscope equipped with filter sets appropriate for imaging the dyes used to label the spheres. Blood flow measurements made under normal conditions showed a mean retinal blood flow of 19.8 +/- 12.4 ml/min 100 g tissue (mean +/- SD; n = 15 cats). Since the retinal circulation perfuses only the inner half of the retina, the effective flow rate in that region is about twice this value. RBF increased during hypoxemia (P(a)O2 < 42 mm Hg) to 336% of the normoxic value on average. Analysis of sphere deposition patterns showed that the central retina had a higher blood flow than the peripheral retina, although this difference was significant only during hypoxemia. We conclude that even with a relatively small number of spheres deposited in the retina, the technique can reveal important properties of the retinal circulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验