Suppr超能文献

酵母基因组数据库(SGD)使用基因本体论(GO)提供二级基因注释。

Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO).

作者信息

Dwight Selina S, Harris Midori A, Dolinski Kara, Ball Catherine A, Binkley Gail, Christie Karen R, Fisk Dianna G, Issel-Tarver Laurie, Schroeder Mark, Sherlock Gavin, Sethuraman Anand, Weng Shuai, Botstein David, Cherry J Michael

机构信息

Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305-5120, USA.

出版信息

Nucleic Acids Res. 2002 Jan 1;30(1):69-72. doi: 10.1093/nar/30.1.69.

Abstract

The Saccharomyces Genome Database (SGD) resources, ranging from genetic and physical maps to genome-wide analysis tools, reflect the scientific progress in identifying genes and their functions over the last decade. As emphasis shifts from identification of the genes to identification of the role of their gene products in the cell, SGD seeks to provide its users with annotations that will allow relationships to be made between gene products, both within Saccharomyces cerevisiae and across species. To this end, SGD is annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge that can be shared across species. The GO consists of three separate ontologies describing molecular function, biological process and cellular component. The goal is to use published information to associate each characterized S.cerevisiae gene product with one or more GO terms from each of the three ontologies. To be useful, this must be done in a manner that allows accurate associations based on experimental evidence, modifications to GO when necessary, and careful documentation of the annotations through evidence codes for given citations. Reaching this goal is an ongoing process at SGD. For information on the current progress of GO annotations at SGD and other participating databases, as well as a description of each of the three ontologies, please visit the GO Consortium page at http://www.geneontology.org. SGD gene associations to GO can be found by visiting our site at http://genome-www.stanford.edu/Saccharomyces/.

摘要

酿酒酵母基因组数据库(SGD)的资源,从遗传图谱和物理图谱到全基因组分析工具,反映了过去十年在鉴定基因及其功能方面的科学进展。随着重点从基因鉴定转向鉴定其基因产物在细胞中的作用,SGD旨在为用户提供注释,以便在酿酒酵母内部以及跨物种之间建立基因产物之间的关系。为此,SGD正在将基因注释到基因本体论(GO)中,这是一种可以跨物种共享的生物知识的结构化表示。GO由描述分子功能、生物过程和细胞成分的三个独立本体组成。目标是利用已发表的信息,将每个已表征的酿酒酵母基因产物与来自这三个本体中的一个或多个GO术语相关联。为了使其有用,必须以一种基于实验证据进行准确关联、必要时对GO进行修改以及通过给定引用的证据代码对注释进行仔细记录的方式来完成。实现这一目标是SGD正在进行的一项工作。有关SGD和其他参与数据库中GO注释的当前进展情况,以及对这三个本体各自的描述,请访问基因本体论联盟的页面:http://www.geneontology.org 。通过访问我们的网站:http://genome-www.stanford.edu/Saccharomyces/ ,可以找到SGD基因与GO的关联。

相似文献

1
Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO).
Nucleic Acids Res. 2002 Jan 1;30(1):69-72. doi: 10.1093/nar/30.1.69.
2
Gene Ontology annotations at SGD: new data sources and annotation methods.
Nucleic Acids Res. 2008 Jan;36(Database issue):D577-81. doi: 10.1093/nar/gkm909. Epub 2007 Nov 3.
4
CvManGO, a method for leveraging computational predictions to improve literature-based Gene Ontology annotations.
Database (Oxford). 2012 Mar 20;2012:bas001. doi: 10.1093/database/bas001. Print 2012.
5
SGD: Saccharomyces Genome Database.
Nucleic Acids Res. 1998 Jan 1;26(1):73-9. doi: 10.1093/nar/26.1.73.
6
Creating the gene ontology resource: design and implementation.
Genome Res. 2001 Aug;11(8):1425-33. doi: 10.1101/gr.180801.
8
Saccharomyces Genome Database provides mutant phenotype data.
Nucleic Acids Res. 2010 Jan;38(Database issue):D433-6. doi: 10.1093/nar/gkp917. Epub 2009 Nov 11.
9
The Saccharomyces Genome Database: Gene Product Annotation of Function, Process, and Component.
Cold Spring Harb Protoc. 2015 Dec 2;2015(12):pdb.prot088914. doi: 10.1101/pdb.prot088914.
10
Functional annotations for the Saccharomyces cerevisiae genome: the knowns and the known unknowns.
Trends Microbiol. 2009 Jul;17(7):286-94. doi: 10.1016/j.tim.2009.04.005. Epub 2009 Jul 2.

引用本文的文献

1
KinMod database: a tool for investigating metabolic regulation.
Database (Oxford). 2022 Oct 12;2022. doi: 10.1093/database/baac081.
2
Integration of probabilistic functional networks without an external Gold Standard.
BMC Bioinformatics. 2022 Jul 25;23(1):302. doi: 10.1186/s12859-022-04834-4.
3
Humanized yeast to model human biology, disease and evolution.
Dis Model Mech. 2022 Jun 1;15(6). doi: 10.1242/dmm.049309. Epub 2022 Jun 6.
5
A novel essential protein identification method based on PPI networks and gene expression data.
BMC Bioinformatics. 2021 May 13;22(1):248. doi: 10.1186/s12859-021-04175-8.
7
Predicting Protein Functions Based on Differential Co-expression and Neighborhood Analysis.
J Comput Biol. 2021 Jan;28(1):1-18. doi: 10.1089/cmb.2019.0120. Epub 2020 Apr 17.
8
Identifying protein complexes based on an edge weight algorithm and core-attachment structure.
BMC Bioinformatics. 2019 Sep 14;20(1):471. doi: 10.1186/s12859-019-3007-y.
10
A common neighbor based technique to detect protein complexes in PPI networks.
J Genet Eng Biotechnol. 2018 Jun;16(1):227-238. doi: 10.1016/j.jgeb.2017.10.010. Epub 2017 Oct 18.

本文引用的文献

2
Creating the gene ontology resource: design and implementation.
Genome Res. 2001 Aug;11(8):1425-33. doi: 10.1101/gr.180801.
5
Saccharomyces Genome Database provides tools to survey gene expression and functional analysis data.
Nucleic Acids Res. 2001 Jan 1;29(1):80-1. doi: 10.1093/nar/29.1.80.
7
Integrating functional genomic information into the Saccharomyces genome database.
Nucleic Acids Res. 2000 Jan 1;28(1):77-80. doi: 10.1093/nar/28.1.77.
9
Using the Saccharomyces Genome Database (SGD) for analysis of protein similarities and structure.
Nucleic Acids Res. 1999 Jan 1;27(1):74-8. doi: 10.1093/nar/27.1.74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验