Suppr超能文献

饮食、进化与衰老——人类饮食中农业时代后钾钠比和碱氯比倒置的病理生理效应

Diet, evolution and aging--the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet.

作者信息

Frassetto L, Morris R C, Sellmeyer D E, Todd K, Sebastian A

机构信息

University of California, San Francisco 94143, USA.

出版信息

Eur J Nutr. 2001 Oct;40(5):200-13. doi: 10.1007/s394-001-8347-4.

Abstract

Theoretically, we humans should be better adapted physiologically to the diet our ancestors were exposed to during millions of years of hominid evolution than to the diet we have been eating since the agricultural revolution a mere 10,000 years ago, and since industrialization only 200 years ago. Among the many health problems resulting from this mismatch between our genetically determined nutritional requirements and our current diet, some might be a consequence in part of the deficiency of potassium alkali salts (K-base), which are amply present in the plant foods that our ancestors ate in abundance, and the exchange of those salts for sodium chloride (NaCl), which has been incorporated copiously into the contemporary diet, which at the same time is meager in K-base-rich plant foods. Deficiency of K-base in the diet increases the net systemic acid load imposed by the diet. We know that clinically-recognized chronic metabolic acidosis has deleterious effects on the body, including growth retardation in children, decreased muscle and bone mass in adults, and kidney stone formation, and that correction of acidosis can ameliorate those conditions. Is it possible that a lifetime of eating diets that deliver evolutionarily superphysiologic loads of acid to the body contribute to the decrease in bone and muscle mass, and growth hormone secretion, which occur normally with age? That is, are contemporary humans suffering from the consequences of chronic, diet-induced low-grade systemic metabolic acidosis? Our group has shown that contemporary net acid-producing diets do indeed characteristically produce a low-grade systemic metabolic acidosis in otherwise healthy adult subjects, and that the degree of acidosis increases with age, in relation to the normally occurring age-related decline in renal functional capacity. We also found that neutralization of the diet net acid load with dietary supplements of potassium bicarbonate (KHCO3) improved calcium and phosphorus balances, reduced bone resorption rates, improved nitrogen balance, and mitigated the normally occurring age-related decline in growth hormone secretion--all without restricting dietary NaCl. Moreover, we found that co-administration of an alkalinizing salt of potassium (potassium citrate) with NaCl prevented NaCl from increasing urinary calcium excretion and bone resorption, as occurred with NaCl administration alone. Earlier studies estimated dietary acid load from the amount of animal protein in the diet, inasmuch as protein metabolism yields sulfuric acid as an end-product. In cross-cultural epidemiologic studies, Abelow found that hip fracture incidence in older women correlated with animal protein intake, and they suggested a causal relation to the acid load from protein. Those studies did not consider the effect of potential sources of base in the diet. We considered that estimating the net acid load of the diet (i. e., acid minus base) would require considering also the intake of plant foods, many of which are rich sources of K-base, or more precisely base precursors, substances like organic anions that the body metabolizes to bicarbonate. In following up the findings of Abelow et al., we found that plant food intake tended to be protective against hip fracture, and that hip fracture incidence among countries correlated inversely with the ratio of plant-to-animal food intake. These findings were confirmed in a more homogeneous population of white elderly women residents of the U.S. These findings support affirmative answers to the questions we asked above. Can we provide dietary guidelines for controlling dietary net acid loads to minimize or eliminate diet-induced and age-amplified chronic low-grade metabolic acidosis and its pathophysiological sequelae. We discuss the use of algorithms to predict the diet net acid and provide nutritionists and clinicians with relatively simple and reliable methods for determining and controlling the net acid load of the diet. A more difficult question is what level of acidosis is acceptable. We argue that any level of acidosis may be unacceptable from an evolutionarily perspective, and indeed, that a low-grade metabolic alkalosis may be the optimal acid-base state for humans.

摘要

从理论上讲,在数百万年的原始人类进化过程中,我们人类在生理上应该更适应祖先所接触的饮食,而不是自一万年前农业革命以来,尤其是自两百年前工业化以来我们所食用的饮食。在我们基因决定的营养需求与当前饮食之间的这种不匹配所导致的众多健康问题中,有些可能部分是由于缺乏钾碱盐(K-碱)造成的,钾碱盐在我们祖先大量食用的植物性食物中含量丰富,而这些盐类被当代饮食中大量摄入的氯化钠(NaCl)所取代,同时当代饮食中富含钾碱盐的植物性食物却很少。饮食中钾碱盐的缺乏会增加饮食所带来的全身净酸负荷。我们知道,临床上公认的慢性代谢性酸中毒会对身体产生有害影响,包括儿童生长发育迟缓、成年人肌肉和骨量减少以及肾结石形成,而且酸中毒的纠正可以改善这些状况。一生食用给身体带来进化上超生理水平酸负荷的饮食,是否可能导致随着年龄增长正常出现的骨量和肌肉量减少以及生长激素分泌减少呢?也就是说,当代人类是否正遭受慢性饮食诱导的轻度全身代谢性酸中毒的后果呢?我们的研究小组表明,当代产生净酸的饮食确实会在其他方面健康的成年受试者中典型地导致轻度全身代谢性酸中毒,而且酸中毒的程度会随着年龄增长而增加,这与肾功能随着年龄正常出现的下降有关。我们还发现,用碳酸氢钾(KHCO₃)膳食补充剂中和饮食净酸负荷可以改善钙和磷的平衡,降低骨吸收速率,改善氮平衡,并减轻随着年龄增长正常出现的生长激素分泌下降——所有这些都无需限制饮食中的氯化钠。此外,我们发现将钾的碱化盐(柠檬酸钾)与氯化钠共同给药可以防止氯化钠像单独给予氯化钠时那样增加尿钙排泄和骨吸收。早期的研究根据饮食中动物蛋白的量来估计饮食酸负荷,因为蛋白质代谢会产生硫酸作为终产物。在跨文化流行病学研究中,阿贝洛发现老年女性髋部骨折发生率与动物蛋白摄入量相关,他们认为这与蛋白质产生的酸负荷存在因果关系。那些研究没有考虑饮食中潜在碱源的影响。我们认为,估计饮食的净酸负荷(即酸减去碱)需要同时考虑植物性食物的摄入量,其中许多植物性食物是钾碱盐或者更准确地说是碱前体的丰富来源,碱前体是身体代谢为碳酸氢盐的有机阴离子等物质。在跟进阿贝洛等人的研究结果时,我们发现植物性食物的摄入往往对髋部骨折有保护作用,而且不同国家之间的髋部骨折发生率与植物性食物和动物性食物摄入比例呈负相关。在美国白人老年女性这一更为同质的人群中也证实了这些发现。这些发现支持了我们上述问题的肯定答案。我们能否提供饮食指南来控制饮食净酸负荷,以尽量减少或消除饮食诱导的以及年龄加剧的慢性轻度代谢性酸中毒及其病理生理后果呢?我们讨论了使用算法来预测饮食净酸,并为营养学家和临床医生提供相对简单可靠的方法来确定和控制饮食的净酸负荷。一个更难的问题是何种程度的酸中毒是可以接受的。我们认为,从进化的角度来看,任何程度的酸中毒都可能是不可接受的,实际上,轻度代谢性碱中毒可能是人类最佳的酸碱状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验