Espey Michael Graham, Xavier Sandhya, Thomas Douglas D, Miranda Katrina M, Wink David A
Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3481-6. doi: 10.1073/pnas.062604199.
3-Nitrotyrosyl adducts in proteins have been detected in a wide range of diseases. The mechanisms by which reactive nitrogen oxide species may impede protein function through nitration were examined by using a unique model system, which exploits a critical tyrosyl residue in the fluorophoric pocket of recombinant green fluorescent protein (GFP). Exposure of purified GFP suspended in phosphate buffer to synthetic peroxynitrite in either 0.5 or 5 microM steps resulted in progressively increased 3-nitrotyrosyl immunoreactivity concomitant with disappearance of intrinsic fluorescence (IC(50) approximately 20 microM). Fluorescence from an equivalent amount of GFP expressed within intact MCF-7 tumor cells was largely resistant to this bolus treatment (IC(50) > 250 microM). The more physiologically relevant conditions of either peroxynitrite infusion (1 microM/min) or de novo formation by simultaneous, equimolar generation of nitric oxide (NO) and superoxide (e.g., 3-morpholinosydnonimine; NONOates plus xanthine oxidase/hypoxanthine, menadione, or mitomycin C) were examined. Despite robust oxidation of dihydrorhodamine under each of these conditions, fluorescence decrease of both purified and intracellular GFP was not evident regardless of carbon dioxide presence, suggesting that oxidation and nitration are not necessarily coupled. Alternatively, both extra- and intracellular GFP fluorescence was exquisitely sensitive to nitration produced by heme-peroxidase/hydrogen peroxide-catalyzed oxidation of nitrite. Formation of nitrogen dioxide (NO(2)) during the reaction between NO and the nitroxide 2-phenyl-4,4,5,5-tetramethylimidazole-1-oxyl 3-oxide indicated that NO(2) can enter cells and alter peptide function through tyrosyl nitration. Taken together, these findings exemplified that heme-peroxidase-catalyzed formation of NO(2) may play a pivotal role in inflammatory and chronic disease settings while calling into question the significance of nitration by peroxynitrite.
蛋白质中的3 - 硝基酪氨酸加合物已在多种疾病中被检测到。利用一个独特的模型系统研究了活性氮氧化物通过硝化作用阻碍蛋白质功能的机制,该系统利用重组绿色荧光蛋白(GFP)荧光口袋中的一个关键酪氨酸残基。将悬浮在磷酸盐缓冲液中的纯化GFP以0.5或5微摩尔的步长暴露于合成过氧亚硝酸盐中,导致3 - 硝基酪氨酸免疫反应性逐渐增加,同时固有荧光消失(半数抑制浓度约为20微摩尔)。完整MCF - 7肿瘤细胞内表达的等量GFP荧光对这种大剂量处理具有很大抗性(半数抑制浓度>250微摩尔)。研究了更符合生理条件的过氧亚硝酸盐输注(1微摩尔/分钟)或通过同时等摩尔生成一氧化氮(NO)和超氧化物(例如3 - 吗啉代 sydnonimine;NONOates加黄嘌呤氧化酶/次黄嘌呤、甲萘醌或丝裂霉素C)从头形成过氧亚硝酸盐的情况。尽管在这些条件下二氢罗丹明都发生了强烈氧化,但无论是否存在二氧化碳,纯化的和细胞内的GFP荧光下降都不明显,这表明氧化和硝化不一定相关联。另外,细胞外和细胞内的GFP荧光对血红素过氧化物酶/过氧化氢催化的亚硝酸盐氧化产生的硝化作用都极其敏感。NO与氮氧化物2 - 苯基 - 4,4,5,5 - 四甲基咪唑 - 1 - 氧基3 - 氧化物反应过程中二氧化氮(NO₂)的形成表明,NO₂可进入细胞并通过酪氨酸硝化改变肽的功能。综上所述,这些发现表明血红素过氧化物酶催化的NO₂形成可能在炎症和慢性疾病环境中起关键作用,同时也对过氧亚硝酸盐硝化的重要性提出了质疑。