Suppr超能文献

枯草芽孢杆菌亚铁螯合酶突变体的体内和体外研究表明血红素生物合成途径中存在底物通道化现象。

In vivo and in vitro studies of Bacillus subtilis ferrochelatase mutants suggest substrate channeling in the heme biosynthesis pathway.

作者信息

Olsson Ulf, Billberg Annika, Sjövall Sara, Al-Karadaghi Salam, Hansson Mats

机构信息

Department of Biochemistry, Lund University, Sweden.

出版信息

J Bacteriol. 2002 Jul;184(14):4018-24. doi: 10.1128/JB.184.14.4018-4024.2002.

Abstract

Ferrochelatase (EC 4.99.1.1) catalyzes the last reaction in the heme biosynthetic pathway. The enzyme was studied in the bacterium Bacillus subtilis, for which the ferrochelatase three-dimensional structure is known. Two conserved amino acid residues, S54 and Q63, were changed to alanine by site-directed mutagenesis in order to detect any function they might have. The effects of these changes were studied in vivo and in vitro. S54 and Q63 are both located at helix alpha3. The functional group of S54 points out from the enzyme, while Q63 is located in the interior of the structure. None of these residues interact with any other amino acid residues in the ferrochelatase and their function is not understood from the three-dimensional structure. The exchange S54A, but not Q63A, reduced the growth rate of B. subtilis and resulted in the accumulation of coproporphyrin III in the growth medium. This was in contrast to the in vitro activity measurements with the purified enzymes. The ferrochelatase with the exchange S54A was as active as wild-type ferrochelatase, whereas the exchange Q63A caused a 16-fold reduction in V(max). The function of Q63 remains unclear, but it is suggested that S54 is involved in substrate reception or delivery of the enzymatic product.

摘要

亚铁螯合酶(EC 4.99.1.1)催化血红素生物合成途径中的最后一步反应。该酶在枯草芽孢杆菌中得到研究,其亚铁螯合酶的三维结构已知。通过定点诱变将两个保守氨基酸残基S54和Q63替换为丙氨酸,以检测它们可能具有的任何功能。在体内和体外研究了这些变化的影响。S54和Q63均位于α3螺旋上。S54的官能团指向酶外,而Q63位于结构内部。这些残基在亚铁螯合酶中均不与任何其他氨基酸残基相互作用,且从三维结构中无法理解它们的功能。S54A替换而非Q63A替换降低了枯草芽孢杆菌的生长速率,并导致粪卟啉原III在生长培养基中积累。这与用纯化酶进行的体外活性测量结果相反。具有S54A替换的亚铁螯合酶与野生型亚铁螯合酶活性相同,而Q63A替换导致V(max)降低了16倍。Q63的功能仍不清楚,但有人认为S54参与底物接收或酶产物的传递。

相似文献

3
Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase.
J Biol Inorg Chem. 2011 Feb;16(2):235-42. doi: 10.1007/s00775-010-0720-4. Epub 2010 Nov 4.
4
Porphyrin interactions with wild-type and mutant mouse ferrochelatase.
Biochemistry. 2000 Mar 14;39(10):2517-29. doi: 10.1021/bi991346t.
5
Structure and function of ferrochelatase.
J Bioenerg Biomembr. 1995 Apr;27(2):221-9. doi: 10.1007/BF02110037.
6
Crosstalk between metal ions in Bacillus subtilis ferrochelatase.
J Biol Inorg Chem. 2006 Apr;11(3):325-33. doi: 10.1007/s00775-006-0080-2. Epub 2006 Feb 2.
8
Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis.
Structure. 1997 Nov 15;5(11):1501-10. doi: 10.1016/s0969-2126(97)00299-2.
10
The coproporphyrin ferrochelatase of : mechanistic insights into a regulatory iron-binding site.
Biochem J. 2017 Oct 10;474(20):3513-3522. doi: 10.1042/BCJ20170362.

引用本文的文献

1
Direct Spectroscopic Ferrochelatase Assay.
Methods Mol Biol. 2024;2839:243-247. doi: 10.1007/978-1-0716-4043-2_14.
4
Control of Metabolite Flux during the Final Steps of Heme Biosynthesis in Gram-Positive Bacteria.
Biochemistry. 2019 Dec 31;58(52):5259-5270. doi: 10.1021/acs.biochem.9b00140. Epub 2019 Jun 26.
5
Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.
Microbiol Mol Biol Rev. 2017 Jan 25;81(1). doi: 10.1128/MMBR.00048-16. Print 2017 Mar.
7
Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7748-53. doi: 10.1073/pnas.1304049110. Epub 2013 Apr 22.
8
Identification and characterization of solvent-filled channels in human ferrochelatase.
Biochemistry. 2012 Jul 10;51(27):5422-33. doi: 10.1021/bi300598g. Epub 2012 Jun 28.
9
Derepression of the Bacillus subtilis PerR peroxide stress response leads to iron deficiency.
J Bacteriol. 2012 Mar;194(5):1226-35. doi: 10.1128/JB.06566-11. Epub 2011 Dec 22.
10
Bacterial ferrochelatase turns human: Tyr13 determines the apparent metal specificity of Bacillus subtilis ferrochelatase.
J Biol Inorg Chem. 2011 Feb;16(2):235-42. doi: 10.1007/s00775-010-0720-4. Epub 2010 Nov 4.

本文引用的文献

1
TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE.
Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072-8. doi: 10.1073/pnas.44.10.1072.
4
The 2.0 A structure of human ferrochelatase, the terminal enzyme of heme biosynthesis.
Nat Struct Biol. 2001 Feb;8(2):156-60. doi: 10.1038/84152.
5
Hematologic aspects of the porphyrias.
Int J Hematol. 2000 Jan;71(1):1-17.
7
Structural and mechanistic basis of porphyrin metallation by ferrochelatase.
J Mol Biol. 2000 Mar 17;297(1):221-32. doi: 10.1006/jmbi.2000.3569.
9
Transcriptional control of Bacillus subtilis hemN and hemZ.
J Bacteriol. 1999 Oct;181(19):5922-9. doi: 10.1128/JB.181.19.5922-5929.1999.
10
Ferritin mutants of Escherichia coli are iron deficient and growth impaired, and fur mutants are iron deficient.
J Bacteriol. 1999 Mar;181(5):1415-28. doi: 10.1128/JB.181.5.1415-1428.1999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验