Suppr超能文献

I类赖氨酰-tRNA合成酶系统发育的功能注释表明基因转移的作用有限。

Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer.

作者信息

Ambrogelly Alexandre, Korencic Dragana, Ibba Michael

机构信息

Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA.

出版信息

J Bacteriol. 2002 Aug;184(16):4594-600. doi: 10.1128/JB.184.16.4594-4600.2002.

Abstract

Functional and comparative genomic studies have previously shown that the essential protein lysyl-tRNA synthetase (LysRS) exists in two unrelated forms. Most prokaryotes and all eukaryotes contain a class II LysRS, whereas most archaea and a few bacteria contain a less common class I LysRS. In bacteria the class I LysRS is only found in the alpha-proteobacteria and a scattering of other groups, including the spirochetes, while the class I protein is by far the most common form of LysRS in archaea. To investigate this unusual distribution we functionally annotated a representative phylogenetic sampling of LysRS proteins. Class I LysRS proteins from a variety of bacteria and archaea were characterized in vitro by their ability to recognize Escherichia coli tRNA(Lys) anticodon mutants. Class I LysRS proteins were found to fall into two distinct groups, those that preferentially recognize the third anticodon nucleotide of tRNA(Lys) (U36) and those that recognize both the second and third positions (U35 and U36). Strong recognition of U35 and U36 was confined to the pyrococcus-spirochete grouping within the archaeal branch of the class I LysRS phylogenetic tree, while U36 recognition was seen in other archaea and an example from the alpha-proteobacteria. Together with the corresponding phylogenetic relationships, these results suggest that despite its comparative rarity the distribution of class I LysRS conforms to the canonical archaeal-bacterial division. The only exception, suggested from both functional and phylogenetic data, appears to be the horizontal transfer of class I LysRS from a pyrococcal progenitor to a limited number of bacteria.

摘要

功能基因组学和比较基因组学研究先前已表明,必需蛋白赖氨酰 - tRNA合成酶(LysRS)以两种不相关的形式存在。大多数原核生物和所有真核生物都含有II类LysRS,而大多数古细菌和少数细菌含有不太常见的I类LysRS。在细菌中,I类LysRS仅存在于α-变形菌和其他一些群体中,包括螺旋体,而I类蛋白是古细菌中LysRS最常见的形式。为了研究这种不寻常的分布,我们对LysRS蛋白的代表性系统发育样本进行了功能注释。通过识别大肠杆菌tRNA(Lys)反密码子突变体的能力,对来自各种细菌和古细菌的I类LysRS蛋白进行了体外表征。发现I类LysRS蛋白分为两个不同的组,一组优先识别tRNA(Lys)的第三个反密码子核苷酸(U36),另一组识别第二个和第三个位置(U35和U36)。对U35和U36的强烈识别仅限于I类LysRS系统发育树古细菌分支内的火球菌 - 螺旋体分组,而在其他古细菌和一个α-变形菌的例子中观察到对U36的识别。结合相应的系统发育关系,这些结果表明,尽管I类LysRS相对罕见,但其分布符合典型的古细菌 - 细菌划分。从功能和系统发育数据来看,唯一的例外似乎是I类LysRS从火球菌祖先进水平转移到有限数量的细菌中。

相似文献

1
Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer.
J Bacteriol. 2002 Aug;184(16):4594-600. doi: 10.1128/JB.184.16.4594-4600.2002.
2
Context-dependent anticodon recognition by class I lysyl-tRNA synthetases.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14224-8. doi: 10.1073/pnas.97.26.14224.
3
Substrate recognition by class I lysyl-tRNA synthetases: a molecular basis for gene displacement.
Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):418-23. doi: 10.1073/pnas.96.2.418.
4
tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
J Mol Biol. 1998 May 15;278(4):801-13. doi: 10.1006/jmbi.1998.1711.
5
Anticodon recognition and discrimination by the alpha-helix cage domain of class I lysyl-tRNA synthetase.
Biochemistry. 2007 Oct 2;46(39):11033-8. doi: 10.1021/bi700815a. Epub 2007 Aug 31.
6
A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases.
Science. 1997 Nov 7;278(5340):1119-22. doi: 10.1126/science.278.5340.1119.
7
Functional convergence of two lysyl-tRNA synthetases with unrelated topologies.
Nat Struct Biol. 2002 Apr;9(4):257-62. doi: 10.1038/nsb777.
9
Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi.
FEBS Lett. 2005 May 9;579(12):2629-34. doi: 10.1016/j.febslet.2005.04.001. Epub 2005 Apr 9.

引用本文的文献

4
Emergence and evolution.
Top Curr Chem. 2014;344:43-87. doi: 10.1007/128_2013_423.
5
Prediction and classification of aminoacyl tRNA synthetases using PROSITE domains.
BMC Genomics. 2010 Sep 22;11:507. doi: 10.1186/1471-2164-11-507.
6
Weighted bootstrapping: a correction method for assessing the robustness of phylogenetic trees.
BMC Evol Biol. 2010 Aug 17;10:250. doi: 10.1186/1471-2148-10-250.
7
Translation termination in pyrrolysine-utilizing archaea.
FEBS Lett. 2009 Nov 3;583(21):3455-60. doi: 10.1016/j.febslet.2009.09.044. Epub 2009 Sep 29.
8
The CCA anticodon specifies separate functions inside and outside translation in Bacillus cereus.
RNA Biol. 2009 Sep-Oct;6(4):479-87. doi: 10.4161/rna.6.4.9332. Epub 2009 Sep 23.
9
Anticodon recognition and discrimination by the alpha-helix cage domain of class I lysyl-tRNA synthetase.
Biochemistry. 2007 Oct 2;46(39):11033-8. doi: 10.1021/bi700815a. Epub 2007 Aug 31.
10
In silico detection of tRNA sequence features characteristic to aminoacyl-tRNA synthetase class membership.
Nucleic Acids Res. 2007;35(16):5593-609. doi: 10.1093/nar/gkm598. Epub 2007 Aug 17.

本文引用的文献

1
Functional convergence of two lysyl-tRNA synthetases with unrelated topologies.
Nat Struct Biol. 2002 Apr;9(4):257-62. doi: 10.1038/nsb777.
2
Structure-based phylogeny of class IIa tRNA synthetases in relation to an unusual biochemistry.
J Mol Evol. 2001 Oct-Nov;53(4-5):261-8. doi: 10.1007/s002390010216.
3
Aminoacyl-tRNA synthetases: potential markers of genetic code development.
Trends Biochem Sci. 2001 Oct;26(10):591-6. doi: 10.1016/s0968-0004(01)01932-6.
4
Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation.
Science. 2001 Oct 5;294(5540):165-8. doi: 10.1126/science.1064242.
5
Recognition of cognate transfer RNA by the 30S ribosomal subunit.
Science. 2001 May 4;292(5518):897-902. doi: 10.1126/science.1060612.
6
Context-dependent anticodon recognition by class I lysyl-tRNA synthetases.
Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14224-8. doi: 10.1073/pnas.97.26.14224.
7
Domain-specific recruitment of amide amino acids for protein synthesis.
Nature. 2000 Sep 7;407(6800):106-10. doi: 10.1038/35024120.
8
Aminoacyl-tRNA synthesis.
Annu Rev Biochem. 2000;69:617-50. doi: 10.1146/annurev.biochem.69.1.617.
9
The adaptor hypothesis revisited.
Trends Biochem Sci. 2000 Jul;25(7):311-6. doi: 10.1016/s0968-0004(00)01600-5.
10
Synthesis of cysteinyl-tRNA(Cys) by a genome that lacks the normal cysteine-tRNA synthetase.
Biochemistry. 2000 Jul 4;39(26):7792-8. doi: 10.1021/bi0004955.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验