Thomas Douglas D, Espey Michael Graham, Vitek Michael P, Miranda Katrina M, Wink David A
Tumor Biology Section, Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12691-6. doi: 10.1073/pnas.202312699. Epub 2002 Sep 11.
The chemical origins of nitrated tyrosine residues (NT) formed in proteins during a variety of pathophysiological conditions remain controversial. Although numerous studies have concluded that NT is a signature for peroxynitrite (ONOO(-)) formation, other works suggest the primary involvement of peroxidases. Because metal homeostasis is often disrupted in conditions bearing NT, the role of metals as catalysts for protein nitration was examined. Cogeneration of nitric oxide (NO) and superoxide (O(2)(-)), from spermine/NO (2.7 microM/min) and xanthine oxidase (1-28 microM O(2)(-)/min), respectively, resulted in protein nitration only when these species were produced at approximately equivalent rates. Addition of ferriprotoporphyrin IX (hemin) to this system increased nitration over a broad range of O(2)(-) concentrations with respect to NO. Nitration in the presence of superoxide dismutase but not catalase suggested that ONOO(-) might not be obligatory to this process. Hemin-mediated NT formation required only the presence of NO(2)(-) and H(2)O(2), which are stable end-products of NO and O(2)(-) degradation. Ferrous, ferric, and cupric ions were also effective catalysts, indicating that nitration is mediated by species capable of Fenton-type chemistry. Although ONOO(-) can nitrate proteins, there are severe spatial and temporal constraints on this reaction. In contrast, accumulation of metals and NO(2)(-) subsequent to NO synthase activity can result in far less discriminate nitration in the presence of an H(2)O(2) source. Metal catalyzed nitration may account for the observed specificity of protein nitration seen under pathological conditions, suggesting a major role for translocated metals and the labilization of heme in NT formation.
在各种病理生理条件下蛋白质中形成的硝化酪氨酸残基(NT)的化学起源仍存在争议。尽管众多研究得出结论,NT是过氧亚硝酸盐(ONOO⁻)形成的标志,但其他研究表明过氧化物酶起主要作用。由于在存在NT的情况下金属稳态常常被破坏,因此研究了金属作为蛋白质硝化催化剂的作用。分别由精胺/一氧化氮(2.7微摩尔/分钟)和黄嘌呤氧化酶(1 - 28微摩尔超氧阴离子/分钟)共同产生一氧化氮(NO)和超氧阴离子(O₂⁻),只有当这些物质以大致相等的速率产生时才会导致蛋白质硝化。向该系统中添加亚铁原卟啉IX(血红素),相对于NO,在广泛的超氧阴离子浓度范围内增加了硝化作用。在超氧化物歧化酶存在但过氧化氢酶不存在的情况下进行硝化表明,过氧亚硝酸盐可能不是该过程所必需的。血红素介导的NT形成仅需要亚硝酸根离子(NO₂⁻)和过氧化氢(H₂O₂)的存在,它们是NO和O₂⁻降解的稳定终产物。亚铁离子、铁离子和铜离子也是有效的催化剂,表明硝化作用是由能够进行芬顿型化学反应的物质介导的。尽管过氧亚硝酸盐可以使蛋白质硝化,但该反应存在严重的空间和时间限制。相比之下,一氧化氮合酶活性后金属和亚硝酸根离子的积累,在有过氧化氢源的情况下会导致选择性低得多的硝化作用。金属催化的硝化作用可能解释了在病理条件下观察到的蛋白质硝化特异性,这表明易位金属和血红素在NT形成中的不稳定化起主要作用。